Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cosi
\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge2\sqrt{\frac{a^2}{a+1}+\frac{b^2}{b+1}}\)
\(\Leftrightarrow A\ge\frac{2ab}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Đến đây bạn tự xử lí phần dấu "="
Nhật Quỳnh Cô si lỗi rồi kìa -_-
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}\)\(\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{4}{4}=1\)
Dấu "=" xảy ra tại a=b=1
Vậy..........................
ta co:
a-b=a^3+b^3
a-b-b^3=a^3
Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3
Nhưng a-b-b^3=a^3 nên b=0
Mà a=a^3 suy ra a=1
áp dụng BĐT Bu-nhi-a ta có:
\(\left(a+b+c+d\right)^2\le\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right).\)
<=>\(2^2\le4\left(a^2+b^2+c^2+d^2\right)\)
<=>\(\left(a^2+b^2+c^2+d^2\right)\ge1\)
=> GTNN của a^2 +b^2 +c^2 +d^2 là 1 <=> a=b=c=d=1/2
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(áp dụng bất đẳng thức bunhiacopxki)
\(\Leftrightarrow\left(a+b+c\right)^2\le3.64\Rightarrow\left(a+b+c\right)\le8\sqrt{3}\)
Lại có \(\left(ab+bc+ac\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)(bất đẳng thức bunhiacopxki)
\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2=64\)
Khi đó \(P=ab+bc+ca+a+b+c\le64+8\sqrt{3}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c\\a^2+b^2+c^2=64\end{cases}\Leftrightarrow}a=b=c=\frac{8\sqrt{3}}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:
\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{1}{1+2}=\frac{1}{3}^{\left(đpcm\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\\frac{a}{a+1}=\frac{b}{b+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+a=ab+b\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy ...
\(a^2+a=b^2+b\)
\(\Leftrightarrow a^2+a-b^2-b=0\)
\(\Leftrightarrow\left(a^2-b^2\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
Vì a, b là số dương \(\Rightarrow a+b+1>0\)
\(\Rightarrow a-b=0\)\(\Leftrightarrow a=b\)( đpcm )
Ta có: \(a^2+a=b^2+b\)
\(\Leftrightarrow a^2+a-b^2-b=0\)
\(\Leftrightarrow\left(a^2-b^2\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
Mà \(\hept{\begin{cases}a>0\\b>0\end{cases}}\Rightarrow a+b+1>0\)
\(\Rightarrow a-b=0\Rightarrow a=b\)