Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1
a) Ta có: \(A=-34x+34y\)
\(=-34\left(x-y\right)\)
Thay x-y=2 vào biểu thức A=-34(x-y), ta được:
\(A=-34\cdot2=-68\)
Vậy: Khi x-y=2 thì A=68
b) Ta có: \(B=ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:
\(B=-1\cdot\left(-7\right)=7\)
Vậy: Khi a+b=-7 và x-y=-1 thì B=7
Lời giải:
$A=\frac{12n-4}{16n}=\frac{3n-1}{4n}=\frac{3n}{4n}-\frac{1}{4n}=\frac{3}{4}-\frac{1}{4n}$
Để $A$ nhỏ nhất thì $\frac{1}{4n}$ lớn nhất
Để $\frac{1}{4n}$ lớn nhất thì $4n$ là số tự nhiên dương nhỏ nhất
Điều này xảy ra khi $n=1$
$\Rightarrow A_{\min}=\frac{3}{4}-\frac{1}{4.1}=\frac{1}{2}$
Gọi nên ta có :
và
và
và
Mà là các số lẻ nên không thể có ước là 2
và là nguyên tố cùng nhau
Bài 1: Tìm ƯCLN(220; 240; 368)
220 = 22.5.11; 240 = 24.3.5; 368 = 24.23
ƯCLN(220; 240; 368) = 22 = 4
Bài 2: Thuật toán Euclid:
Bước 1: Chia hai số cần tìm ước chung lớn nhất cho nhau(lấy số lớn chia số bé) được số dư là R1.
Bước 2: Lấy số bé chia cho R1 được số dư là R2, rồi lại lấy tiếp tục lấy R1 chia cho R2 cứ chia thế cho đến khi Rn = 0.
Bước 3: Số chia trong phép chia hết chính là Ước chung của hai số.
Ứng dụng thuật toán Eucild tìm ƯCLN(700; 280)
700 : 280 = 2 dư 140
280 : 140 = 2 dư 0
Vậy ƯCLN(700; 280) = 140
Bình phương của số lẻ chia cho 4 dư 1: (2k + 1)² = 4k(k + 1) + 1 ♦
---------------
Ta cmr m + n và m² + n² không có chung ước nguyên tố lẻ. Thật thế giả sử m + n và m² + n² có chung ước nguyên tố lẻ p => p cũng là ước của (m + n)² - (m² + n²) = 2mn => p là ước của n (hoặc m) => p là ước của m (hoặc n) => m, n có ước chung p > 1, mâu thuẫn với giả thiết.
(m, n) = 1 => m, n không cùng chẵn. Ta xét 2 th
1. m, n cùng lẻ => m + n và m² + n² cùng chẵn. Mặt khác ♦ => m² + n² chia cho 4 dư 2, tức chỉ chia hết cho 2 => (m + n, m² + n²) = 2
2. m, n khác tính chẵn lẻ => m + n và m² + n² cùng lẻ => không có chung ước nguyên tố chẵn, và như trên đã chỉ ra chúng không có chung ước nguyên tố lẻ => (m + n, m² + n²) = 1