K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
U
0
AK
31 tháng 12 2018
Nhóm vào , ta có :
\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)
Đến đây áp dụng HĐT là ra
TT
15 tháng 2 2020
+) Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )
+) Lại có : \(a^2+b^2+c^2=2016\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)
\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)
Hay : \(A=-4040082\)
Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.
Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)
\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)
\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)
\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)
\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)
\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)
Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)
\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)
\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)