K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2022

\(2a+b=2\Rightarrow b=2-2a\)

\(\Rightarrow P=3a^2+b\left(2a+b\right)=3a^2+2b=3a^2+2\left(2-2a\right)=3a^2-4a+4=3\left(a-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(p_{min}=\dfrac{8}{3}\) khi \(a=\dfrac{2}{3}\)

 

28 tháng 11 2022

Bài 1:

a^2-5ab-6b^2=0

=>a^2-6ab+ab-6b^2=0

=>a*(a-6b)+b(a-6b)=0

=>(a-6b)(a+b)=0

=>a=-b hoặc a=6b

TH1: a=-b

\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)

TH2: a=6b

\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)

Bài 1:

Ta có: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2-2\cdot\left(2a-3b\right)\cdot\left(2b-3a\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(5a-5b\right)^2\)

\(=\left[5\cdot\left(a-b\right)\right]^2=25\left(a-b\right)^2\)

Thay a-b=0 vào biểu thức \(A=25\left(a-b\right)^2\), ta được:

\(A=25\cdot0^2=0\)

Vậy: Khi a-b=0 thì A=0

Bài 3:

a) Ta có: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\)

Ta có: \(\left(x+4\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+4\right)^2-16\ge-16\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2+8x\) là -16 khi x=-4

13 tháng 8 2017

a ) \(VT=\left(x+y+z\right)^2-\left(x-y-z\right)^2\)

\(=\left(x+y+z-x+y+z\right)\left(x+y+z+x-y-z\right)\)

\(=4x\left(y+z\right)=VP\)

b ) \(VT=\left(2a+b\right)^2-\left(a+b\right)^2-3a^2\)

\(=\left(2a+b-a-b\right)\left(2a+b+a+b\right)-3a^2\)

\(=a\left(3a+2b\right)-3a^2\)

\(=3a^2+2ab-3a^2=2ab=VP\)

13 tháng 8 2017

a) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=4x\left(y+z\right)\)

\(\Rightarrow x^2+y^2+z^2+2xy+2xz+2yz-\left(x^2+y^2+z^2-2xy-2xz+2yz\right)=4x\left(y+z\right)\)\(\Rightarrow x^2+y^2+z^2+2xy+2xz+2yz-x^2-y^2-z^2+2xy+2xz-2yz=4x\left(y+z\right)\)\(\Leftrightarrow4xy+4xz=4x\left(y+z\right)\)

\(\Leftrightarrow4x\left(y+z\right)=4x\left(y+z\right)\).

b) \(\left(2a+b\right)^2-\left(a+b\right)^2-3a^2=2ab\)

\(\Rightarrow\left(2a\right)^2+2.2a.b+b^2-\left(a^2+2ab+b^2\right)-3a^2=2ab\)

\(\Rightarrow4a^2+4ab+b^2-a^2-2ab-b^2-3a^2=2ab\)

\(\Leftrightarrow2ab=2ab\)

4 tháng 7 2017

a, \(3a^2b^2-6a^2b^3+3a^2b^2\)

\(=6a^2b^2-6a^2b^3=6a^2b^2\left(1-b\right)\)

b, \(a^{n+1}-2a^{n-1}=a^2.a^{n-1}-2a^{n-1}=a^{n-1}\left(a^2-2\right)\)

c, \(3a^2b\left(a+b-2\right)-4ac^2-4bc^2+8c^2\)

\(=3a^2b\left(a+b-2\right)-4c^2\left(a+b-2\right)\)

\(=\left(3a^2b-4c^2\right)\left(a+b-2\right)\)

c, \(5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^{n+1}-2b^n\)

\(=5a^n\left(a^2-ab+1\right)-2a^2b^n+2ab^n.b-2b^n\)

\(=5a^n\left(a^2-ab+1\right)-2b^n\left(a^2-ab+1\right)\)

\(=\left(5a^n-2b^n\right)\left(a^2-ab+1\right)\)

27 tháng 10 2020

Đề True ??

30 tháng 10 2020

lời giải của 1 bạn trên "Diễn đàn toán học" . mình trích nguyên bài làm của bạn ấy luôn nha

Giả định \(a=x;b=y;c=z\)

Áp dụng AM-GM ta có : 

\(2\left(a^3+a^3+x^3\right)\ge6xa^2\)

\(3\left(b^3+b^3+y^3\right)\ge9yb^2\)

\(4\left(c^3+c^3+z^3\right)\ge12zc^2\)

Cộng 3 bất đẳng thức trên lại theo vế ta được 

\(2P+2x^3+3y^3+4z^3\ge6xa^2+9yb^2+12zc^2\)

Ta tìm x,y,z thỏa mãn \(\hept{\begin{cases}\frac{6x}{1}=\frac{9y}{2}=\frac{12z}{3}\\x^2+2y^2+3z^2=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{6}{\sqrt{407}}\\y=\frac{8}{\sqrt{407}}\\z=\frac{9}{\sqrt{407}}\end{cases}}\)

\(\Rightarrow P\ge\frac{12}{\sqrt{407}}\)

Vậy \(P_{min}=\frac{12}{\sqrt{407}}\Leftrightarrow a=\frac{6}{\sqrt{407}};b=\frac{8}{\sqrt{407}};c=\frac{9}{\sqrt{407}}\) 

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3 

6 tháng 9 2017

\(3y^2\left(a-3x\right)-a\left(a-3x\right)=\left(3y^2-a\right)\left(a-3x\right)\)