\(\text{a}^3+b^3+\text{a}b\ge\frac{1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Bạn xem lại đề. Với $a=-1; b=-2$ thì $a^3+b^3+ab$ âm, tức là nhỏ hơn $\frac{1}{2}$ (trái với đpcm)

a3+b3+ab=(a+b)3-3ab(a+b)+ab=(a+b)3-ab(3a+3b-1)

=(a+b)3-ab(2a+4b)

=(a+b)3-2ab(a+2b)             (đề bài sai phải không????)

9 tháng 2 2018

Ta có a + b = 1 nên  \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)

\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 2 2018

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

19 tháng 3 2019

Ta có :

\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)

\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)

\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)

19 tháng 3 2019

Thanhs.

25 tháng 12 2018

(a+b)(a2+ab+b2)+ab

=1(a2+2ab+b2-ab)+ab

=((a+b)2-ab)+ab

=1-ab+ab

=1

25 tháng 12 2018

\(a^3+b^3+ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab\)

\(=a^2+b^2\)

\(=a^2+b^2+2ab-2ab\)

\(=\left(a+b\right)^2-2ab\)

\(=1-2ab\)

Ta có: \(a+b=1\)

\(\Rightarrow\left(a+b\right)^2=1^2\)

\(a^2+2ab+b^2=1\)

Áp dụng BĐT AM-GM ta có:

\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)

\(\Leftrightarrow1\ge4ab\)

\(\Leftrightarrow\frac{1}{4}\ge ab\)

\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)

                                                                                    đpcm

P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ

\(a^2+b^2\ge2ab\)rồi áp dụng nhé~

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

27 tháng 3 2016

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}\)(*)

Với a, b > 0 ta có :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)

Ta lại có : 12 = (a +b)2 >= 4ab. Suy ra 1/ab >= 4 

Vậy (*) >= 9

27 tháng 3 2016

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

\(=4+\frac{2a}{b}+\frac{2b}{a}+1=5+\frac{2a}{b}+\frac{2b}{a}\ge5+2\sqrt{\frac{2a}{b}.\frac{2b}{a}}=9\left(BĐTcôsi\right)\)

Dấu "=" xảy ra khi: a=b