K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(P=\dfrac{4xy^2-4x^2y+x^3}{4x^3-8x^2y}=\dfrac{x\left(x^2-4xy+4y^2\right)}{4x^2\left(x-2y\right)}=\dfrac{x-2y}{4x}\)

\(Q=\dfrac{2xy-x^2+x-2y}{4x-4x^2}=\dfrac{x\left(2y-x\right)-\left(2y-x\right)}{-4x\left(x-1\right)}=\dfrac{\left(2y-x\right)\left(x-1\right)}{-4x\left(x-1\right)}=\dfrac{x-2y}{4x}\)

Do đó: P=Q

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

28 tháng 7 2021

a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)

b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)

c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)

1 tháng 9 2023

a) \(3x^2-3xy-5x+5y\)

\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) \(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left[x^2-\left(y+1\right)^2\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

c) \(x^2+1+2x-y^2\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

f) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

a: =3x(x-y)-5(x-y)

=(x-y)(3x-5)

b: \(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

d:

Sửa đề: x^2+4x-2xy-4y+y^2

=x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

e: =x(x^2-2x+1)

=x(x-1)^2

f: =2(x^2+2x+1-y^2)

=2[(x+1)^2-y^2]

=2(x+1+y)(x+1-y)

2 tháng 9 2020

a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)

Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)

b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)

c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)

\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)

Thay \(x=234\)và \(y=465\)vào biểu thức ta được:

\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)

2 tháng 9 2020

a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)

\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:

\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)

b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Tại x = 103 thì giá trị của BT là:

\(\left(103-3\right)^3=100^3=1000000\)

c) Ta có: \(4x^2-y^2-2y-1\)

\(=\left(2x\right)^2-\left(y+1\right)^2\)

\(=\left(2x-y-1\right)\left(2x+y+1\right)\)

Tại x = 234, y = 465 thì giá trị của BT là:

\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)

\(=2\cdot934=1868\)

3 tháng 9 2018

     \(4x^2+y^2+4xy+4x+2y+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)

\(=\left(2x+y+1\right)^2+1>0\forall x,y\)

Chúc bạn học tốt.

20 tháng 10 2018

phân tích đa thức thành nhân tử:=(2x+y-1)2

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2