Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 0<a<b<c<d<e<f nên :
(a-b) < 0 ; (c-d) < 0 ; (e-f) < 0
và (b-a) > 0 ; (d-c) > 0 ; (f-e) > 0
Do đó (a-b)(c-d)(e-f) < 0 ; (b-a)(d-c)(f-e) > 0
Mà (a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) <=> x = -1
ta có: \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a}{b}.\frac{d}{c}=\frac{a}{b}.\frac{c}{d}\Leftrightarrow\frac{a.d}{b.c}=\frac{a.c}{bd}\Leftrightarrow\frac{d}{c}=\frac{c}{d}\Leftrightarrow d^2=c^2\)
suy ra d=c hoặc d=-c
suy ra \(\frac{c}{d}=\frac{c}{c}=1\) hoặc \(\frac{c}{d}=\frac{c}{-c}=-1\)
Đáp án D
Ta có hàm số g x = f x - 2018 là hàm số bậc ba liên tục trên R.
Do a>0 nên l i m x → - ∞ g ( x ) = - ∞ ; l i m x → + ∞ g ( x ) = + ∞
Để ý g 0 = d - 2018 > 0 ; g 1 = a + b + c + d - 2018 < 0 nên phương trình g(x)=0 có đúng 3 nghiệm phân biệt trên R.
Khi đó đồ thị hàm số g x = f x - 2018 cắt trục hoành tại 3điểm phân biệt nên hàm số y = f x - 2018 có đúng 5 cực trị.