Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
n2 + n + 1 = n.(n+1) + 1.
Vì n.(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n.(n+1) + 1 là số lẻ, không chia hết cho 2.
Để chứng minh n.(n+1) + 1 không chia hết cho 5 ta thấy hai số n và n+1 có thể có các chữ số tận cùng sau:
n tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; tương ứng số tận cùng của n+ 1 như sau:
n+ 1 tận cùng là 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
=> tích của n.(n+1) tận cùng là:
0, 2, 6, 2, 0, 0, 2, 6, 2, 0
Hay là n.(n+1) tận cùng là 0, 2, 6
=> n.(n+1) +1 tận cùng là: 1, 3, 7 không chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(n^2+n+1=n.\left(n+1\right)+1\)
Mà n.(n+1) là chẵn vì chia hết cho 2 nên cộng 1 là lẻ nên ko chia hết cho 4.
b)Em xét chữ số tận cùng:
Chúc học tốt^^
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
![](https://rs.olm.vn/images/avt/0.png?1311)
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Ta có:
n2 + n + 1 = n.n + n + 1 = n. (n+1) +1
Mà n.(n+1) là tích của 2 số tự nhiên liên tiếp => Tích là số chẵn=> n.(n+1) là số chẵn
=>n(n+1) + 1 là số lẻ => không chia hết cho 4
n(n+1) là tích của 2 số tự nhiên liên tiếp nên có các chữ số tận cùng là 0;2;6 nên ko có chữ số tận cùng là 4 và 9 => n(n+1) + 1 ko có chữ số tận cùng là 0 hoặc 5 => n(n+1) +1 ko chia hết cho 5