Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (m^2+4)>0=> voi moi m
b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)
c) (m^2+2m+2=(m+1)^2+1>0 voi m=>f(x) luon dong bien=> dpcm
tong quat y=ax+b
DB khi a>0
NB khi a<0
hang so khi a=0
giai
a. với giá trị nào của m thì hàm số y= ( m2 +4)x +3 là hsđb :
=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m
b. với giá trị nào của m tì hàm số y= (m2 -2)x +31 là hsnb
a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)
c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R
ta ca
a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m
=> a>0 với mọi m=> y luôn đồng biến
Lời giải:
1.PT hoành độ giao điểm:
$x^2-mx-4=0(*)$
Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$
$\Leftrightarrow (x+1)(x-4)=0$
$\Rightarrow x=-1$ hoặc $x=4$
Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$
Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$
2.
$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$
Áp dụng định lý Viet:
$x_1+x_2=m$ và $x_1x_2=-4$
Khi đó:
$y_1^2+y_2^2=49$
$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$
$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$
$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$
$\Leftrightarrow m^2(m^2+8)+8m^2=17$
$\Leftrightarrow m^4+16m^2-17=0$
$\Leftrightarrow (m^2-1)(m^2+17)=0$
$\Rightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
Đồ thị hàm số là trục hoành khi: m2-2m+1=0
<=> (m-1)2=0 => m=1
Đáp số: m=1
Nếu mình ko nhầm thì để đồ thị hàm số là trục hoành => khi thay m vào hàm số dc y=x
=> m^2 - 2m + 1 = 1
=> (m-1)^2 = 1
=> m-1 = 1 hoặc m -1 = -1
=> m = 2 hoặc m = 0
Có lẽ là m^2 - 2m + 1 =0 như bạn dưới chăng?
a,phương trình hoành độ giao điểm của (P) và (D) là:
x2 = mx - m + 1 (1) \(\Leftrightarrow\) x2 - mx + m - 1 = 0
\(\Delta\) = m2 - 4m +4 = (m - 20)2\(\ge\)0 với mọi giá trị của m
\(\Rightarrow\) phương trình (1) luôn luôn có nghiệm hay (D) và (P) luôn luôn có điểm chung voeí mọi giá trị của m
b,(D) tiếp xúc với (P) khi (1) có nghiệm kép hay :
\(\Delta\) = ( m - 2 )2 = 0 \(\Leftrightarrow\) m = 2
lúc đó phương trình củađường thẳng (D) là : y = 2x -1
c, tự vẽ đồ thị nha
trên đồ thị ta thấy (P) và (D) tiếp xúc nhau tại điểm A (1;1)
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
G/s đt đó luôn đi qua điểm I(xI ; yI ) với mọi m
Khi đó \(\left(m-m^2-2\right)y_I=\left(m^2+m-3\right)x_I-2m-5\forall m\)
\(\Leftrightarrow my_I-m^2y_I-2y_I=m^2x_I+mx_I-3x_I-2m-5\forall m\)
\(\Leftrightarrow-m^2\left(y_I+x_I\right)+m\left(y_I-x_I+2\right)-\left(2y_I+3x_I+5\right)=0\forall m\)
Hình như là \(\Leftrightarrow\hept{\begin{cases}y_I+x_I=0\\y_I-x_I=-2\\2y_I+3x_I=-5\end{cases}}\)ko tìm đc m thì phải ???