K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
7 tháng 10 2017

a, Vì  M B C ^ = M D B ^ = 1 2 s đ C B ⏜  nên chứng minh được ∆MBC:∆MDB (g.g)

b, Vì  M B O ^ + M A O ^ = 180 0  nên tứ giác MAOB nội tiếp

c, Đường tròn đường kính OM là đường tròn ngoại tiếp tứ giác MAOB => r =  M O 2

Gọi H là giao điểm của AB với OM

=> OH ⊥ AB; AH = BH =  R 3 2

Giải tam giác vuông OAM, đường cao AH ta được OM = 2R Þ r = R

d,  Ta có  M I B ^ = s đ D E ⏜ + s đ B C ⏜ 2 và  M A B ^ = s đ A C ⏜ + s đ B C ⏜ 2

Vì AE song song CD =>  s đ D E ⏜ = s đ A C ⏜ =>  M I B ^ = M A B ^

Do tứ giác MAIB nội tiếp hay 5 điểm A, B, O, I, M nằm trên cùng 1 đường tròn kính MO

Từ đó ta có được  M I O ^ = 90 0 => OI ⊥ CD hay I là trung điểm của CD

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại Ma) tam giác MAB là tam giác j?b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với...
Đọc tiếp

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.

1
27 tháng 4 2021

Ai giả câu c bài 2 đi ạ khó quá