Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: A và CD nằm cùng một phía so với đường O'O
góc ABC=góc AEC=góc ICD
góc DBC=gsoc AED=góc IDC
=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC
=góc ICD+góc IDC+góc DIC=180 độ
=>BCID nội tiếp
TH2: A và CD nằm khác phía so với O'O
ABCE nội tiếp (O)
=>góc BCE+góc BAE=180 độ
=>góc BCE=góc BAF
Tương tự, ta được: góc BAF=góc BDI
=>góc BCE=góc BDI
=>góc BCI+góc BDI=180 độ
=>BCID nội tiếp
b: góc ICD=góc CEA=góc DCA
=>góc ICD=góc DCA
Chứng minh tương tự, ta được: góc IDC=góc CDA
Xét ΔICD và ΔACD có
góc ICD=góc DCA
CD chung
góc IDC=góc CDA
=>ΔICD=ΔACD
=>DI=DA và CI=CA
=>CD là trung trực của AI
c:
CD vuông góc AI
=>AI vuông góc MN
Gọi K là giao của AB và CD
Chứng minh được CK^2=KA*KB=KD^2
=>KC=KC
CD//MN
=>KC/AN=KD/AM=KB/AB
=>AN=AM
=>ΔIMN cân tại I
=>IA là phân giác của góc MIN
a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.
Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.
Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.
Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.
Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T. Theo tính chất 2 tiếp tuyến giao nhau:
BN = TN, CM = TM => BN + CM = MN (đpcm).
b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:
Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp
=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.
Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).