K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

A C B D O O' S T F E

Gọi tiếp tuyến chung tại S của (O) và (O') cắt AB tại T. OO' cắt AC,BD lần lượt tại E,F.

Vì AB,CD là tiếp tuyến chung ngoài của (O) và (O') nên ABDC là hình thang cân có trục đối xứng OO'

Từ đó AB = CD và E,F lần lượt là trung điểm của AC,BD

Dễ thấy AT = BT = ST => T là trung điểm AB. Suy ra ST là đường trung bình của hình thang AEFB

=> AB = 2ST = AE + BF = (AC + BD)/2. Mà CD = AB (cmt) nên AB + CD = AC + BD (đpcm).

11 tháng 10 2017

a, Ta có AB = AE + BE = EM + EN

Và CD = FD + FC = NF + NE

=> AB + CD = 2EF => AB = EF

b, Ta có EM = AB – EB = EF – EN = NF

1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

mà BC\(\perp\)OA

nên CD//OA

2: Ta có: OA là đường trung trực của BC

OA cắt BC tại E

Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E

Xét ΔOBA vuông tại B có BE là đường cao

nên \(OE\cdot OA=OB^2\)

=>\(OE\cdot OA=OD^2\)

=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

Xét ΔOED và ΔODA có

\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)

\(\widehat{EOD}\) chung

Do đó: ΔOED~ΔODA

=>\(\widehat{ODE}=\widehat{OAD}\)

 

21 tháng 1

mik c.ơn