Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\left(x;x^3+3x+1\right)\) là 1 điểm thuộc \(f\left(x\right)\)
Gọi \(A'\left(x';y'\right)\) là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in g\left(x\right)\)
\(\Rightarrow y'=x'^3-3x'^2+6x'-1\) (1)
Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=x^3+3x+1+b\end{matrix}\right.\)
Thay vào phương trình (1) ta được:
\(x^3+3x+1+b=\left(x+a\right)^3-3\left(x+a\right)^2+6\left(x+a\right)-1\)
\(\Leftrightarrow2+b=3ax^2+3a^2x+a^3-3x^2-6ax-3a^2+3x+6a\)
\(\Leftrightarrow x^2\left(3a-3\right)+x\left(3a^2-6a+3\right)+\left(a^3-3a^2+6a-b-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-3=0\\3a^2-6a+3=0\\a^3-3a^2+6a-b-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow P=3\)
Gọi \(I\left(-1;2\right)\) là tâm đường tròn (C)
\(\overrightarrow{AB}=\left(2;2\right)\)
Gọi I' là ảnh của I qua phép tịnh tiến \(\overrightarrow{AB}\Rightarrow I'\left(1;4\right)\)
Phương trình (C') là ảnh của (C) qua phép tịnh tiến nói trên là:
\(\left(x-1\right)^2+\left(y-4\right)^2=4\)
Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)
Do d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(4x+3y+c=0\)
d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|-8+6+c\right|}{\sqrt{4^2+3^2}}=3\Rightarrow\left|c-2\right|=15\Rightarrow\left[{}\begin{matrix}c=17\\c=-13\end{matrix}\right.\)
Có 2 đường thẳng d': \(\left[{}\begin{matrix}4x+3y+17=0\\4x+3y-13=0\end{matrix}\right.\)
Chọn \(A\left(0;\frac{1}{3}\right)\in d\)
Gọi A' là ảnh của A qua phép tịnh tiến T thì \(A'\left(a;2-a+\frac{1}{3}\right)\Rightarrow A'\left(a;\frac{7}{3}-a\right)\)
Do \(A'\in d'\Rightarrow\left[{}\begin{matrix}4a+3\left(\frac{7}{3}-a\right)+17=0\\4a+3\left(\frac{7}{3}-a\right)-13=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-24\\a=-6\end{matrix}\right.\)
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C= (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
Tọa độ đỉnh của \(\left(P\right)\) là \(A\left(-3;-10\right)\)
Gọi A' là đỉnh của (P') thì A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=-3-3=-6\\y_{A'}=-1-10=-11\end{matrix}\right.\) \(\Rightarrow A'\left(-6;-11\right)\)
Đường tròn \(\left(C_1\right)\) tâm \(A\left(-1;1\right)\) bán kính \(R=3\)
Đường tròn \(\left(C_2\right)\) tâm \(B\left(3;-2a\right)\) bán kính \(R'=\sqrt{3a^2-a+5}\)
Do \(\left(C_2\right)\) là ảnh của \(\left(C_2\right)\) qua phép tịnh tiến nên \(R=R'\)
\(\Leftrightarrow3a^2-a+5=9\Leftrightarrow3a^2-a-4=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{4}{3}\notin Z\left(l\right)\end{matrix}\right.\)
\(\Rightarrow B\left(3;2\right)\)
\(\Rightarrow\overrightarrow{v}=\overrightarrow{AB}=\left(4;1\right)\)
\(\Rightarrow\) Tổng tung và hoành độ bằng 5