K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

Để d1 cắt d2 \(\Leftrightarrow\left(m+1\right)\left(m-1\right)\ne-2\Leftrightarrow m^2\ne-1\) (luôn đúng)

Do đó d1 luôn cắt d2

Pt tọa độ giao điểm: \(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m+1\\x+\left(m-1\right)y=m^2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x-2\left(m-1\right)y=m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=3m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m^2-1}{m^2+1}\\y=\dfrac{2\left(m+1\right)\left(m^2-1\right)}{m^2+1}\end{matrix}\right.\) 

Để giao điểm thuộc Oy \(\Leftrightarrow x=0\Rightarrow\dfrac{3m^2-1}{m^2+1}=0\Rightarrow x=\pm\dfrac{1}{\sqrt{3}}\)

9 tháng 5 2021

- Xét d1 và d2 có : \(\left\{{}\begin{matrix}\overrightarrow{n_{d1}}\left(1;-3\right)\\\overrightarrow{n_{d2}}\left(1;-2\right)\end{matrix}\right.\)

\(\Rightarrow\cos\alpha=\left|\dfrac{\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}}{\left|\overrightarrow{n_{d1}}\right|.\left|\overrightarrow{n_{d2}}\right|}\right|=\left|\dfrac{1.1+\left(-2\right).\left(-3\right)}{\sqrt{\left(1^2+\left(-3\right)^2\right)\left(1^2+\left(-2\right)^2\right)}}\right|=\dfrac{7\sqrt{2}}{10}\)

\(\Rightarrow\alpha=~8^o\)

- Từ d1 và d2 ta có hệ phương trình \(\left\{{}\begin{matrix}x-3y=-1\\x-2y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=6\end{matrix}\right.\)

Vậy tọa độ giao điểm của d1 và d2 là ( 17; 6 ) .

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

18 tháng 4 2017

Để hai đường thẳng d1;  d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1;  d2; d3 đồng quy.

Giao điểm của d1 và d3 là nghiệm hệ phương trình:

x − 2 y ​ + 1 = 0 x + ​ y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ;    2 )

Do 3 đường thẳng này đồng quy  nên điểm A thuộc d2. Suy ra:

3m -  (3m-2).2 + 2m – 2= 0

⇔ 3m – 6m + 4 + 2m – 2 =  0  ⇔  - m  + 2 = 0  ⇔  m= 2

Với m= 2 thì đường thẳng d2 :  2x -  4y  + 2= 0 hay  x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.

Vậy không có giá trị nào của m thỏa mãn.

ĐÁP ÁN D

b: Tọa độ A là:

y=0 và 3x-1=0

=>x=1/3 và y=0

Tọa độ B là:

y=0 và 3-x=0

=>x=3 và y=0

Tọa độ C là:

3x-1=-x+3 và y=3x-1

=>x=1 và y=2

c: tan a=3

nên a=71 độ

27 tháng 6 2019

Cái này là toán lp 9 mà :D

a/ Để...\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne1\\2m+1=1\end{matrix}\right.\Leftrightarrow m=0\)

b/ Vì (d1) cắt...

Ta có PTHĐGĐ:

(m-3)x+2m+1=3x-2

Thay x= 2 vào có:

(m-3).2+2m+1= 3.2-2

\(\Leftrightarrow2m-6+2m+1=4\)

\(\Leftrightarrow m=\frac{9}{4}\) (tm)

c/ Vì...

Thay y= -3 vào y= x-5

\(\Rightarrow x=2\)

Thay x= 2; y= -3 vào (d1)

(m-3).2+2m+1= -3

\(\Leftrightarrow2m-6+2m+1=-3\)

\(\Leftrightarrow m=\frac{1}{2}\)

M thuộc (d1) nên M(1-2t;1+t)

Theo đề, ta có: d(M;d2)=d(M;d3)

=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)

=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|

=>|-2t+3|=|-11t+3|

=>-2t+3=-11t+3 hoặc -2t+3=11t-3

=>t=0 hoặc t=6/13

=>M(1;1); M(1/13; 19/13)