Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét d1 và d2 có : \(\left\{{}\begin{matrix}\overrightarrow{n_{d1}}\left(1;-3\right)\\\overrightarrow{n_{d2}}\left(1;-2\right)\end{matrix}\right.\)
\(\Rightarrow\cos\alpha=\left|\dfrac{\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}}{\left|\overrightarrow{n_{d1}}\right|.\left|\overrightarrow{n_{d2}}\right|}\right|=\left|\dfrac{1.1+\left(-2\right).\left(-3\right)}{\sqrt{\left(1^2+\left(-3\right)^2\right)\left(1^2+\left(-2\right)^2\right)}}\right|=\dfrac{7\sqrt{2}}{10}\)
\(\Rightarrow\alpha=~8^o\)
- Từ d1 và d2 ta có hệ phương trình \(\left\{{}\begin{matrix}x-3y=-1\\x-2y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=6\end{matrix}\right.\)
Vậy tọa độ giao điểm của d1 và d2 là ( 17; 6 ) .
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Để hai đường thẳng d1; d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1; d2; d3 đồng quy.
Giao điểm của d1 và d3 là nghiệm hệ phương trình:
x − 2 y + 1 = 0 x + y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ; 2 )
Do 3 đường thẳng này đồng quy nên điểm A thuộc d2. Suy ra:
3m - (3m-2).2 + 2m – 2= 0
⇔ 3m – 6m + 4 + 2m – 2 = 0 ⇔ - m + 2 = 0 ⇔ m= 2
Với m= 2 thì đường thẳng d2 : 2x - 4y + 2= 0 hay x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.
Vậy không có giá trị nào của m thỏa mãn.
ĐÁP ÁN D
b: Tọa độ A là:
y=0 và 3x-1=0
=>x=1/3 và y=0
Tọa độ B là:
y=0 và 3-x=0
=>x=3 và y=0
Tọa độ C là:
3x-1=-x+3 và y=3x-1
=>x=1 và y=2
c: tan a=3
nên a=71 độ
Cái này là toán lp 9 mà :D
a/ Để...\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne1\\2m+1=1\end{matrix}\right.\Leftrightarrow m=0\)
b/ Vì (d1) cắt...
Ta có PTHĐGĐ:
(m-3)x+2m+1=3x-2
Thay x= 2 vào có:
(m-3).2+2m+1= 3.2-2
\(\Leftrightarrow2m-6+2m+1=4\)
\(\Leftrightarrow m=\frac{9}{4}\) (tm)
c/ Vì...
Thay y= -3 vào y= x-5
\(\Rightarrow x=2\)
Thay x= 2; y= -3 vào (d1)
(m-3).2+2m+1= -3
\(\Leftrightarrow2m-6+2m+1=-3\)
\(\Leftrightarrow m=\frac{1}{2}\)
M thuộc (d1) nên M(1-2t;1+t)
Theo đề, ta có: d(M;d2)=d(M;d3)
=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)
=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|
=>|-2t+3|=|-11t+3|
=>-2t+3=-11t+3 hoặc -2t+3=11t-3
=>t=0 hoặc t=6/13
=>M(1;1); M(1/13; 19/13)
Để d1 cắt d2 \(\Leftrightarrow\left(m+1\right)\left(m-1\right)\ne-2\Leftrightarrow m^2\ne-1\) (luôn đúng)
Do đó d1 luôn cắt d2
Pt tọa độ giao điểm: \(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m+1\\x+\left(m-1\right)y=m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x-2\left(m-1\right)y=m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=3m^2-1\\2x+2\left(m-1\right)y=2m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m^2-1}{m^2+1}\\y=\dfrac{2\left(m+1\right)\left(m^2-1\right)}{m^2+1}\end{matrix}\right.\)
Để giao điểm thuộc Oy \(\Leftrightarrow x=0\Rightarrow\dfrac{3m^2-1}{m^2+1}=0\Rightarrow x=\pm\dfrac{1}{\sqrt{3}}\)