\(\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{2}\)

d2:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

\(d_2:\left\{{}\begin{matrix}x=-1\\y=t\\z=-1+t\end{matrix}\right.\)

Gọi giao điểm của \(\Delta\)\(d_2\) là A

\(\Rightarrow A\left(-1;a;-1+a\right)\Rightarrow\overrightarrow{MA}=\left(-1;a-1;a-2\right)\)

Do \(\Delta\perp d_1\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{d1}}=0\)

\(\Leftrightarrow3.\left(-1\right)+4.\left(a-1\right)+1\left(a-2\right)=0\)

\(\Leftrightarrow5a-9=0\Rightarrow a=\frac{9}{5}\Rightarrow\overrightarrow{MA}=\left(-1;\frac{4}{5};\frac{-1}{5}\right)\)

Chọn \(\overrightarrow{u_{\Delta}}=\left(5;-4;1\right)\) là 1 vtcp của \(\Delta\)

\(\Rightarrow cos\alpha=\frac{\left|5.0-4.1+1.1\right|}{\sqrt{0+1+1}.\sqrt{25+16+1}}=\frac{\sqrt{21}}{14}\)

Kết quả xấu vậy ta

27 tháng 3 2019

điểm M ( 0.1 .1 ) ạ

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Bài 1:

ĐKXĐ:.............

Phương trình hoành độ giao điểm của \((d)\cap (C)\):

\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)

Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$

Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)

\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)

\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)

Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)

Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)

\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Bài 2:

Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)

Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau

Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$

Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)

Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:

\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)

17 tháng 1 2017

\(d\perp d_1\Rightarrow d\perp\overrightarrow{u_1}\left(1;-1;3\right)\\d\perp d_2\Rightarrow d\perp\overrightarrow{u_2}\left(-1;1;3\right) \)

Suy ra d // \(\left[\overrightarrow{u_1};\overrightarrow{u_2}\right]=\left(-6;-6;0\right)\) // \(\overrightarrow{n}\left(1;1;0\right)\)

Vậy d nhận \(\overrightarrow{n}\left(1;1;0\right)\) làm véc-tơ chỉ phương

\(d:\left\{\begin{matrix}x=1+t\\y=-2+t\\z=3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Dễ thấy đường thẳng $d_1$ đi qua điểm \(M(1,-1,0)\Rightarrow \overrightarrow{MA}=(4,-2,5)\)

Khi đó, nếu $(P)$ là mp chứa \(d_1,MA\) thì \(\overrightarrow{n_P}=[\overrightarrow{d_1},\overrightarrow{MA}]=(1,-3,-2)\)

\(\Rightarrow \text{PTMP}: x-3y-2z-4=0\)

Ta thấy \(C\in (d_2),C\in (P)\Rightarrow \) dễ dàng tìm được tọa độ điểm \(C(-1,-1,-1)\)

Lại có \(B=AC\cap d_1\). Và PTĐT \(AC\): \(\frac{x+1}{3}=\frac{y+1}{-1}=\frac{z+1}{3}\)

\(\Rightarrow B(2,-2,2)\)

Do đó \(BC=\sqrt{19}\)

6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5 2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ?? 3) Trong...
Đọc tiếp

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5

2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??

3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\)\(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng

3
NV
6 tháng 5 2019

Câu 1:

\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:

\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)

\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)

\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)

\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)

\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)

\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)

\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)

\(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)

NV
6 tháng 5 2019

Câu 2:

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)

\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)

\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Câu 2)

Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là

\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$

Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.

\(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)

\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$

\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$

\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)

Từ đây ta suy ra \(a=\frac{-5b}{2}\)\(c=\frac{-b}{2}\)

Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)

\(\Rightarrow (P): -5x+2y-z+16=0\)

\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)

\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)

\(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)

\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.