K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

a) đk : m \(\ne\pm\sqrt{2}\)

m = -2 thì ( d ) : \(y=-x\) ; ( d' ) : \(y=2x+1\)

gọi N ( x0 ; y0 ) là giao điểm của 2 đường thẳng (d  ) và (d ' )

\(\Rightarrow\)( d) : y0 = -x0 ; ( d' ) : y0 = 2x0 + 1

\(\Rightarrow-x_0=2x_0+1\Rightarrow x_0=\frac{-1}{3}\)

\(\Rightarrow y_0=\frac{1}{3}\)

Vậy tọa độ giao điểm của 2 đường thẳng trên là \(N\left(\frac{1}{3};\frac{1}{3}\right)\)

b) ( d ) // ( d' ) \(\Leftrightarrow\hept{\begin{cases}-1=m^2-2\\m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}\Leftrightarrow}m=1}\)

Vậy m = 1 thì ( d) // ( d' )

13 tháng 4 2020

a)  Khi m=-2

=>y=-x-2+2=>y=-x (d) 

    y=[(-2)²-2]x+1=>y=2x+1 (d')

=>2x+1=-x =>3x=-1 =>x=-1/3

=>y=1/3

Vậy toạ độ giao điểm của chúng là x=-1/3 ;y=1/3

b)  Để (d) song song (d')

=> -1=m²-2 =>m²=1 =>m=±1

Và m+2≠1 =>m≠-1

=>m=1

Vậy m=1

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

b: Phương trình hoành độ giao điểm là:

\(\dfrac{-1}{2}x^2-4x+16=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)

\(\Leftrightarrow x^2+8x-32=0\)

\(\Leftrightarrow\left(x+4\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)

Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)

Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)

b: Để hai đường song song thì

\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)

a) Để (d) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào (d), ta được:

\(m-1+5=2\)

\(\Leftrightarrow m+4=2\)

hay m=-2

Vậy: m=-2

20 tháng 11 2016

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

20 tháng 11 2016

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>