Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = ( k + 1)x + 3 có các hệ số a = k + 1, b = 3
Hàm số y = (3 – 2k)x + 1 có các hệ số a' = 3 - 2k, b' = 1
Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là:
a) Theo đề bài ta có b ≠ b' (vì 3 ≠ 1)
Nên hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 song song với nhau khi a = a'
tức là: k + 1 = 3 – 2k
b) Hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 là hàm số bậc nhất nên a ≠ 0 và a' ≠ 0. Hai đường thẳng này cắt nhau khi a ≠ a' tức là:
Vậy với thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.
c) Do b ≠ b' (vì 3 ≠ 1) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.
\(a,\Leftrightarrow3m-1=m+3\Leftrightarrow2m=4\Leftrightarrow m=2\\ b,\Leftrightarrow3m-1\ne m+3\Leftrightarrow m\ne2\)
a: Để hai đường này cắt nhau thì 2k+1<>k-1
=>k<>-2
b: Để hai đường song song thì 2k+1=k-1
=>k=-2
c: Hai đường này không thể trùng nhau được bởi vì b<>b'(3<>-4)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a, 2 đường thẳng // với nhau khi
\(\hept{\begin{cases}k+3=5-k\\2\ne3\end{cases}\Leftrightarrow k=1}\)
b, 2 đường thẳng cắt nhau khi
\(k+3\ne5-k\Leftrightarrow k\ne1\)
c, 2 đường thẳng trên ko thể trùng nhau được vì hệ số tự do 2 \(\ne\)3
Hàm số y = ( k + 1) x + 3 có các hệ số a = k + 1, b = 3
Hàm số y = ( 3 – 2k ) x + 1 có các hệ số a' = 3 - 2k, b' = 1
Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là :
\(k+1\ne0\)và \(3-2k\ne0\)hay \(k\ne-1\)và \(k\ne\frac{3}{2}\)( * )
b) Hai đường thẳng y = ( k + 1 ) x + 3 và y = ( 3 – 2k ) x + 1 là hàm số bậc nhất nên \(a\ne0\) và \(a'\ne0\) Hai đường thẳng này cắt nhau khi \(a\ne a'\) tức là :
\(\hept{\begin{cases}k+1\ne0\\3-2k\ne\\k+1\ne3-2k\end{cases}0}\Leftrightarrow\hept{\begin{cases}k\ne-1\\2k\ne\\3k\ne2\end{cases}3}\Leftrightarrow\hept{\begin{cases}k\ne-1\\k\ne\\k\ne\frac{2}{3}\end{cases}\frac{3}{2}}\)
Với \(k\ne-1 ; k\ne\frac{3}{2} ; k\ne\frac{2}{3}\) thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.
c) Do \(b\ne b'\) ( vì \(3\ne1\) ) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.
2:
a: Thay x=0 và \(y=\sqrt{2}\) vào y=2x+b, ta được:
\(b+2\cdot0=\sqrt{2}\)
=>\(b=\sqrt{2}\)
b: Thay x=-2 và y=-2 vào y=-4x+b,ta được:
b-4(-2)=-2
=>b+8=-2
=>b=-10
c: Vì (d)//y=-căn 3*x nên a=-căn 3
=>\(y=-\sqrt{3}\cdot x+b\)
Thay x=1 và \(y=3-\sqrt{3}\) vào (d),ta được:
\(b-\sqrt{3}=3-\sqrt{3}\)
=>b=3
Sửa đề: (d): y=(m-3)x-2m+2
a: Để hàm số đồng biến thì m-3>0
=>m>3
b: Khi m=2 thì (d): y=(2-3)x-2*2+2=-x-2
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m+1=m-3\\-2m+2< >4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=-4\\-2m< >2\end{matrix}\right.\Leftrightarrow m=-2\)
d: tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-2}{m-3}\end{matrix}\right.\)
=>\(OA=\left|\dfrac{2m-2}{m-3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=0\left(m-3\right)-2m+2=-2m+2\end{matrix}\right.\)
=>\(OB=\left|-2m+2\right|=\left|2m-2\right|\)
ΔOAB vuông cân tại O
=>OA=OB
=>\(\left|2m-2\right|=\left|\dfrac{2m-2}{m-3}\right|\)
=>\(\left|2m-2\right|\left(\dfrac{1}{\left|m-3\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}2m-2=0\\m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=4\\m=2\end{matrix}\right.\)
Phần a là m khác 0 nhé. Mình nhầm tí