K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{dMb}=\widehat{aMc}=35^0\)

\(\widehat{aMd}=\widehat{bMc}=180^0-35^0=145^0\)

b: \(\widehat{aMd}=\dfrac{3}{4}\cdot180^0=135^0\)

=>\(\widehat{bMc}=135^0\)

\(\widehat{aMc}=180^0-135^0=45^0\)

nên \(\widehat{bMd}=45^0\)

c: \(4\cdot\widehat{aMd}=5\cdot\widehat{aMc}\)

=>\(\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)

\(\widehat{aMd}=\dfrac{5}{9}\cdot180^0=100^0\)

=>\(\widehat{bMc}=100^0\)

\(\widehat{aMc}=180^0-100^0=80^0\)

nên \(\widehat{bMd}=80^0\)

29 tháng 8 2017

M a b c d

Ta có: \(\widehat{aMc}\)\(\widehat{bMd}\) đối đỉnh nên: \(\widehat{aMc}=\widehat{bMd}\)

\(\widehat{aMd}\)\(\widehat{bMc}\) đối đỉnh nên: \(\widehat{aMd}=\widehat{bMc}\)

a)

\(\widehat{aMc}=\widehat{bMd}=35^o\)

\(\widehat{aMd}=\widehat{bMc}=180^o-35^o=145^o\)

b)

\(\widehat{aMd}=3\widehat{aMc}\Leftrightarrow4\widehat{aMc}=180^o\)

\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=45^o\)

\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-45^o=135^o\)

c)

\(4\widehat{aMd}=5\widehat{aMc}\Leftrightarrow\widehat{aMd}=\dfrac{5}{4}\widehat{aMc}\)

\(\Leftrightarrow\dfrac{9}{4}\widehat{aMc}=180^o\)

\(\Leftrightarrow\widehat{aMc}=\widehat{bMd}=80^o\)

\(\Leftrightarrow\widehat{aMd}=\widehat{bMc}=180^o-80^o=100^o\)

Vậy...

6 tháng 9 2019

M A B C D
Ta có: \(\widehat{AMC}+\widehat{AMD}=180^o\)(2 góc kề bù) (1)
Mà \(\widehat{AMC}=2\widehat{AMD}\)(Đề cho) (Ngoặc ''}'' 2 điều lại)
=> \(2\widehat{AMD}+\widehat{AMD}=180^o\)
=>    \(\left(2+1\right)\widehat{AMD}=180^o\)
=>                    \(3\widehat{AMD}=180^o\)
=>                       \(\widehat{AMD}=180^o:3\)
=>                       \(\widehat{AMD}=60^o\)(2)
Từ (1) và (2) => \(\widehat{AMC}=180^o-60^o=120^o\)
Lại có: \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMD}=120^o\)
Mặt khác: \(\widehat{AMD}=\widehat{BMC}\)(2 góc đối đỉnh)
Mà \(\widehat{AMD}=60^o\)(Theo (2)) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMC}=60^o\)
Vậy \(\widehat{AMC}=\widehat{BMD}=120^o\)
       \(\widehat{AMD}=\widehat{BMC}=60^o\)

6 tháng 9 2019

Hình vẽ sai số đo nên tự chỉnh lại y như đáp án nhé

23 tháng 8 2023

A B C D E F M N

\(\widehat{AMB}=\widehat{AME}+\widehat{EMB}=3\widehat{EMB}+\widehat{EMB}=4\widehat{EMB}=180^o\)

\(\Rightarrow\widehat{EMB}=180^o:4=45^o\) 

Ta có

\(\widehat{AME}+\widehat{EMB}+\widehat{MND}=\widehat{AMB}+\widehat{MND}=225^o\)

\(\Rightarrow180^o+\widehat{MND}=225^o\Rightarrow\widehat{MND}=225^o-180^o=45^o\) 

Gọi O là giao của AB và CD xét tg OMN có

\(\widehat{MON}=180^o-\left(\widehat{EMB}+\widehat{MND}\right)=180^o-\left(45^o+45^o\right)=90^o\)

\(\Rightarrow AB\perp CD\)

25 tháng 8 2023

cảm ơn minh

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên \(a \bot AB;a \bot CD\).

Suy ra: AB // CD.

b) Đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên MN là đường trung trực của đoạn thẳng AB và CD. Suy ra: MD = MC.

Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.

Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).

c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).

Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).

Vậy \(\widehat {AMD} = \widehat {BMC}\).

d) Xét hai tam giác AMD và BMC có:

     MA = MB;

     \(\widehat {AMD} = \widehat {BMC}\);

     MD = MC.

Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).

e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).

\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).

Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).

23 tháng 12 2019

a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :

  • AB = AC ( \(\Delta\)ABC cân tại A )
  • AM : cạnh chung
  • BÂM = CÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )

b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :

  • AM : cạnh chung
  • Góc AHM = Góc AKM ( = 90° )
  • HÂM = KÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )

c ) Gọi O là giao điểm của AM và HK

Xét \(\Delta\)AOH và \(\Delta\)AOK có :

  • AO : cạnh chung
  • AH = AK ( cmt )
  • HÂO = KÂO ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )

\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )

Mà AÔH + AÔK = 180° ( kề bù )

\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90° 

Hay AM \(\perp\)HK 

31 tháng 7 2020

ta có:\(\widehat{aOb}\) = 180

\(\Rightarrow\)3 x \(\widehat{aOc}\)=180

\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60

\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)

ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)

\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180

\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120

\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)

Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120

14 tháng 8 2020

cảm ơn bạn

5 tháng 7 2021

Có \(\widehat{CMA}+\widehat{CMB}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow5\widehat{CMA}+\widehat{CMA}=180^0\Leftrightarrow\widehat{CMA}=30^0\)

\(\Rightarrow\widehat{BMC}=5.30^0=150^0\)

Có \(\widehat{CMA}+\widehat{AMD}=180^0\) 

\(\Leftrightarrow\widehat{AMD}=180^0-30^0=150^0\)

Có \(\widehat{DMB}=\widehat{AMC}=150^0\) (Hai góc đối đỉnh)

Vậy...

5 tháng 7 2021

\(\widehat{DMB}=\widehat{AMC}=30^0\) nhá