Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN
a, xét tam giácNMD và tam giác PQD có : MD = DQ (gt)
góc MDN = góc QDP (đối đỉnh)
ND = DP do D là trung điểm của PN (gt)
=> tam giác NMD = tam giác PQD (c-g-c)
=> MN = PQ (đn)
b, tam giác NMD = tam giác PQD (câu a)
=> góc MND = góc DPQ (đn) mà 2 góc này slt
=> MN // PQ (tc)
a,b) Xét tam giác MNP có
MN=MP
Suy ra MNP cân => MD là đg trung trực (tc)
=> MD NP
Xét tứ giác MPQN có
D là tđ MQ
D là tđ NP
MD NP
Suy ra MPQN là hình thoi
=> MN=PQ ; MN || PQ
c) Ta có
MN || PQ => MN || PE ( P thuộc EQ)
ME || NP (gt)
Suy ra MEPN là hình bình hành
=> MN= EP (tc)
Mà MN=PQ (cmt) => PE=PQ => P là trung điểm QE (đpcm)
Đ/S:......
a b M N P Q
a)Kẻ NP
Ta có:
a//b
=> MNP=NPQ(so le trong)
Xét \(_{\Delta MPN}\) và \(\Delta QNP\) có:
MNP=NPQ( cmt)
NP là cạnh chung
MN=QP
=)\(\Delta MNP=\Delta QNP\)(C-g-C)(1)
=>MPN=QNP(hai cạnh tương ứng)
Mà hai góc này ở vị trí so le trong => MP//NQ(dpcm)
b) Từ (1) => MP=NP(dpcm)
CHÚC BẠN HỌC TỐT!
a) ta có a//b suy ra MN//PQ suy ra góc MNP = góc NPQ (hai góc so le trong)
xét tam giác MNP và tam giác QPN ta có
MN=QP
góc MNP= góc QPN
NP:cạnh chung
suy ra tam giác MNP= tam giác QPN(c.g.c)
suy ra MP=NQ(hai cạnh tương ứng)
b)ta có tam giác MNP= tam giác QPN suy ra góc MPN=góc QNP(hai góc tương ứng)
mà hai góc này ở vị trí so le trong suy ra MP//NQ(đpcm)