Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với
a: Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Ta có hình vẽ:
O A B C D M N
a/ Xét tam giác OAC và tam giác OBD có:
OA = OB (GT)
góc AOC = góc BOD (đối đỉnh)
OC = OD (GT)
=> tam giác OAC = tam giác OBD (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)
=> góc CAO = góc OBD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AC // BD (đpcm)
b/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
góc AOD = góc BOC (đối đỉnh)
OC = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AD // BC 9đpcm)
c/ Ta có: COM = DON (đối đỉnh)
Ta có: góc AOD + góc AOM + góc COM = 1800
=> góc AOD + góc AOM + góc DON = 1800
hay góc MON = 1800
hay M,O,N thẳng hàng
A B C D O M N a) Xét ΔCAO và ΔDBO có:
OA=OB (gt)
\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)
OC=OD (gt)
=> ΔCAO=ΔDBO (c.g.c)
=> AC=BD (hai cạnh tương ứng)
Vì ΔCAO=ΔDBO
=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên
=> AC//BD. (đpcm)
b) Xét ΔAOD và ΔBOC có:
OA=OB (gt)
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OD=OC (gt)
=> ΔAOD=ΔBOC (c.g.c)
=> AD=BC (hai cạnh tương ứng)
Vì ΔAOD=ΔBOC
=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên
=> AD//BC (đpcm)
c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)
Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)
=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)
Vậy ba điểm M,O,N thẳng hàng
A B C D E M N
1/ Xét tg ABC và tg DBE có
BA=BD (gt)
DE//AC (gt) \(\Rightarrow\widehat{BAC}=\widehat{BDE}\) (góc so le trong)
\(\widehat{ABC}=\widehat{DBE}\) (góc đối đỉnh)
=> tg ABC = tg DBE (g.c.g)
2/
Ta có tg ABC = tg DBE (cmt) => BC=BE
Xét tư giác ACDE có
BA=BD (gt); BC=BE (cmt) => ACDE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AE//CD (cạnh đối hbh)
3/
Xét tg ADC có
MA=MC (gt); BA=BD (gt) => BM là đường trung bình của tg ADC
=> BM//CD
Xét tg ADE có
BA=BD (gt); NE=ND (gt) => BN là đường trung bình của tg ADE
=> BN//AE
Mà CD//AE (cạnh đối hbh)
=> BM//AE (cùng //CD)
\(\Rightarrow BN\equiv BM\) (từ 1 điểm ngoài đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
=> M, B, N thẳng hàng
Xét tứ giác ADBC có
M la trung điểm chung của AB và DC
nên ADBC là hình bình hành
=>góc ADB=góc ACB
Xét ΔABC có
MN//BC
AM/AB=1/2
=>N là trung điểm của AC
Xét ΔNBC và ΔNEA có
góc NCB=góc NAE
NC=NA
góc BNC=góc ENA
=>ΔNBC=ΔNEA
=>NB=NE
=>AECB là hình bình hành
=>CE=AB=AC=BD và góc AEC=góc ABC
=>góc AEC=góc ADB
Gọi giao của BD và CE là K
Xét ΔKDE có góc KDE=góc KED
nên ΔKDE cân tại K
=>KD=KE
=>KB=KC
=>K nằm trên trung trực của BC
mà AH là trung trực của BC
nên A,H,K thẳng hàng
A B C D M P Q
hình đấy