Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được ∆OEA = ∆OFB => AE = FB
b, Chứng minh được O E F ^ = O C D ^ => AB//CD
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :
IK song song và bằng 1/2 AD hay bằng 1/2 BC.
KM = DM - DK = DC/2 - DP / 2 = PC/2
Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)
\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)
Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)
Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.
\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)
Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\) (Đồng vị)
\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.
Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.
Vậy tâm đường tròn thuộc đường trung trực của AM.
b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)
Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)
\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)
\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)
\(\Rightarrow MQ\perp CD\)
Kéo dài \(EO\)cắt \(CD\)tại \(F'\).
Ta có: \(AE//CF'\Rightarrow\frac{AE}{CF'}=\frac{OE}{OF'}\)(theo Thalet)
\(EB//DF'\Rightarrow\frac{EB}{DF'}=\frac{OE}{OF'}\)(theo Thalet)
Suy ra \(\frac{EA}{F'C}=\frac{EB}{F'D}\Leftrightarrow\frac{EA}{EB}=\frac{F'C}{F'D}\Rightarrow F'\equiv F\).
Suy ra \(E,O,F\)thẳng hàng.