K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 6 2021

Kéo dài \(EO\)cắt \(CD\)tại \(F'\).

Ta có: \(AE//CF'\Rightarrow\frac{AE}{CF'}=\frac{OE}{OF'}\)(theo Thalet)

\(EB//DF'\Rightarrow\frac{EB}{DF'}=\frac{OE}{OF'}\)(theo Thalet)

Suy ra \(\frac{EA}{F'C}=\frac{EB}{F'D}\Leftrightarrow\frac{EA}{EB}=\frac{F'C}{F'D}\Rightarrow F'\equiv F\).

Suy ra \(E,O,F\)thẳng hàng. 

20 tháng 11 2019

a, Chứng minh được ∆OEA = ∆OFB => AE = FB

b, Chứng minh được  O E F ^ = O C D ^ => AB//CD 

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

20 tháng 4 2020

cho mik đúng ik

4 tháng 1 2018

A B D C M P Q I K R E F

a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :

IK song song và bằng 1/2 AD hay bằng 1/2 BC.

KM = DM - DK = DC/2 - DP / 2 = PC/2

Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)

\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)

Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)

Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.

\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)

Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\)  (Đồng vị) 

\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.

Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.

Vậy tâm đường tròn thuộc đường trung trực của AM.

b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)

Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)

\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)

\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)

\(\Rightarrow MQ\perp CD\)