K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

dễ v~~~ 

16 tháng 12 2016

mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với

22 tháng 2 2017

B D A C O

Xét \(\Delta OAD\)\(\Delta OBC\)

OA=OB (trung điểm )

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OC=OD (trung điểm)

\(\Rightarrow\Delta OAD=\Delta OBC\left(c.g.c\right)\)

b, Có \(\Delta OAD=\Delta OBC\)(câu a)

\(\Rightarrow\widehat{DAB}=\widehat{CBO}\)( 2 góc t.ứng)

Mà 2 góc này ở vị trí so le trong nên AC//BD

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}=\widehat{BOC}\)

OD=OC

Do đó: ΔOAD=ΔOBC

b: Xét tứ giác ACBD có

O là trung điểm của AB

O là trung điểm của CD

Do đó: ACBD là hình bình hành

Suy ra: AC//BD

c: Ta có: OH\(\perp\)AC

AC//BD

DO đó: OH\(\perp\)BD

d: Xét tứ giác CMDN có

DM//CN

DM=CN

Do đó: CMDN là hình bình hành

Suy ra: Hai đường chéo CD và MN cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của MN

hay M,O,N thẳng hàng

2 tháng 4 2017

16 tháng 12 2016

Ta có hình vẽ:

O A B C D M N

a/ Xét tam giác OAC và tam giác OBD có:

OA = OB (GT)

góc AOC = góc BOD (đối đỉnh)

OC = OD (GT)

=> tam giác OAC = tam giác OBD (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)

=> góc CAO = góc OBD (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AC // BD (đpcm)

b/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

góc AOD = góc BOC (đối đỉnh)

OC = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)

=> góc DAO = góc CBO (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AD // BC 9đpcm)

c/ Ta có: COM = DON (đối đỉnh)

Ta có: góc AOD + góc AOM + góc COM = 1800

=> góc AOD + góc AOM + góc DON = 1800

hay góc MON = 1800

hay M,O,N thẳng hàng

17 tháng 12 2016

A B C D O M N a) Xét ΔCAO và ΔDBO có:

OA=OB (gt)

\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)

OC=OD (gt)

=> ΔCAO=ΔDBO (c.g.c)

=> AC=BD (hai cạnh tương ứng)

ΔCAO=ΔDBO

=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên

=> AC//BD. (đpcm)

b) Xét ΔAOD và ΔBOC có:

OA=OB (gt)

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OD=OC (gt)

=> ΔAOD=ΔBOC (c.g.c)

=> AD=BC (hai cạnh tương ứng)

ΔAOD=ΔBOC

=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên

=> AD//BC (đpcm)

c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)

Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)

=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)

Vậy ba điểm M,O,N thẳng hàng

 

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{AOD}=\widehat{BOC}\)

OD=OC

Do đó: ΔOAD=ΔOBC

b: Xét tứ giác ACBD có

O là trung điểm của AB

O là trung điểm của CD

Do đó: ACBD là hình bình hành

Suy ra: BC//AD