Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vị trí của hai điểm P, Q, ta có:
\(\left(2.6-1-1\right)\left(-3.2+2-1\right)< 0\)
\(\Rightarrow P,Q\) khác phía so với \(\Delta\)
Phương trình đường thẳng PQ: \(\dfrac{x+3}{-3-6}=\dfrac{y+2}{-2-1}\Leftrightarrow x-3y-3=0\)
\(MP+MQ\) nhỏ nhất khi M, P, Q thẳng hàng hay M là giao điểm của PQ với \(\Delta\):
\(\Rightarrow M\) có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y-1=0\\x-3y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\Rightarrow M=\left(0;-1\right)\)
Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)
Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)
\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)
Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)
Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:
\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)
Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)
A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)
\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt
Phương trình AQ:
\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
a) Do MH vuông góc với đường thẳng \(\Delta \) nên ta có vecto chỉ phương của MH là: \(\overrightarrow u = \left( {2;1} \right)\)
b) Phương trình tham số của đường thẳng MH đi qua \(M\left( { - 1;1} \right)\) có vecto chỉ phương\(\overrightarrow u = \left( {2;1} \right)\) là: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 + t\end{array} \right. \Leftrightarrow x - 2y + 3 = 0\)
c) H là giao điểm của MH và đường thẳng \(\Delta \)
Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\2x + y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) . Vậy tọa độ điểm H là: \(H\left( {1;2} \right)\)
Độ dài đoạn thẳng MH là: \(MH = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
Thay tọa độ P; Q vào pt delta được 2 giá trị trái dấu
\(\Rightarrow P;Q\) nằm về 2 phía so với delta
\(\Rightarrow MP+MQ\le PQ\)
Dấu "=" xảy ra M;P;Q thẳng hàng hay M là giao điểm của đường thẳng PQ và delta
\(\overrightarrow{PQ}=\left(-9;-3\right)\Rightarrow\) đường thẳng PQ nhận (1;-3) là 1 vtpt
Phương trình PQ:
\(1\left(x-6\right)-3\left(y-1\right)=0\Leftrightarrow x-3y-3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x-3y-3=0\end{matrix}\right.\)
\(\Rightarrow M\left(0;-1\right)\)