K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

a) Ta có: \(A\left(x\right)-B\left(x\right)\) \(=\left(-5^3+3x^4+\dfrac{2}{7}-8x^2-10x\right)-\left(-2x^4-\dfrac{3}{7}+7x^2+8x^3+6x\right)\)

\(=-5^3+3x^4+\dfrac{2}{7}-8x^2-10x+2x^4+\dfrac{3}{7}-7x^2-8x^3-6x\)

\(=-5^3+\left(3x^4+2x^4\right)+\left(\dfrac{2}{7}+\dfrac{3}{7}\right)-\left(8x^2+7x^2\right)-\left(10x+6x\right)\)

\(=-125+5x^4-15x^2-16x+\dfrac{5}{7}\)

b) Lại có: \(M\left(x\right)-A\left(x\right)=B\left(x\right)\)

\(\Rightarrow M\left(x\right)=B\left(x\right)+A\left(x\right)\)

\(\Rightarrow M\left(x\right)=\left(-5^3+3x^4+\dfrac{2}{7}-8x^2-10x\right)+\left(-2x^4-\dfrac{3}{7}+7x^2+8x^3+6x\right)\)

\(\Rightarrow M\left(x\right)=-5^3+3x^4+\dfrac{2}{7}-8x^2-10x-2x^4-\dfrac{3}{7}+7x^2+8x^3+6x\)

\(\Rightarrow M\left(x\right)=-5^3+\left(3x^4-2x^4\right)+\left(\dfrac{2}{7}-\dfrac{3}{7}\right)-\left(8x^2-7x^2\right)-\left(10x-6x\right)\)

\(\Rightarrow M\left(x\right)=-125+x^4-x^2-4x-\dfrac{1}{7}\)

Vậy .....

29 tháng 3 2017

mình ra A(x)-B(x) theo cách tính hàng dọc là \(\dfrac{5}{7}-16x-15x^2-13^3+5^4\)

sao bạn ra kết quả khác mình ta ?

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

a: (2x-3/2)(|x|-5)=0

=>2x-3/2=0 hoặc |x|-5=0

=>x=3/4 hoặc |x|=5

=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)

b: x-8x^4=0

=>x(1-8x^3)=0

=>x=0 hoặc 1-8x^3=0

=>x=1/2 hoặc x=0

c: x^2-(4x+x^2)-5=0

=>x^2-4x-x^2-5=0

=>-4x-5=0

=>x=-5/4

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)

a: \(A\left(x\right)+B\left(x\right)\)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)

\(=8x^2-12x\)

b: C(x)=A(x)-B(x)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)

\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)

Bài 2: 

\(M\left(3\right)=3^2-4\cdot3+3=0\)

=>x=3 là nghiệm của M(x)

\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)

=>x=-1 không là nghiệm của M(x)

23 tháng 5 2017

a, \(A\left(x\right)=x^2-x-2-2x^4+7=-2x^4+x^2-x+\left(-2+7\right)=-2x^4+x^2-x+5\)

\(B\left(x\right)=6x^3+2x^4-8x-5-2x^3-x^2=2x^4+\left(6x^3-2x^3\right)-x^2-8x-5=2x^4+4x^3-x^2-8x-5\)

b, \(A\left(1\right)=-2.1^4+1^2-1+5=-2.1+1-1+5=-2+1-1+5=3\)

\(B\left(2\right)=2.2^4+4.2^3-2^2-8.2-5=2.16+4.8-4-16-5=32+28-4-16-5=35\)

c, \(A\left(x\right)+B\left(x\right)=-2x^4+x^2-x+5+2x^4+4x^3-x^2-8x-5=\left(-2x^2+2x^4\right)+4x^3+\left(x^2-x^2\right)+\left(x-8x\right)+\left(5-5\right)=4x^3-7x\)

d, Ta có: \(A\left(x\right)+B\left(x\right)=0\)

\(\Rightarrow x^3-7x=0\Rightarrow x.\left(x^2-7\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x^2=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\pm\sqrt{7}\end{matrix}\right.\)

Vậy \(x\in\left\{-\sqrt{7};0;\sqrt{7}\right\}\) là nghiệm của đa thức \(A\left(x\right)+B\left(x\right)\)

Chúc bạn học tốt nha!!!

9 tháng 4 2017

\(2A\left(x\right)-B\left(x\right)=2\left(3x^3+2x^4-x^2+8x-7\right)-\left(-x^4-4x^2-2x^3-7+3x\right)\)

\(=4x^4+6x^3-2x^2+16x-14+x^4+2x^3+4x^2-3x+7\)

\(=5x^4+8x^3+x^2+13x-7\)

9 tháng 4 2017

khó hỉu quá bạn ơi :(