Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
a) Ta có :P(x)+Q(x) = (6x3+5x-3x2-1) + (5x2-4x3-2x+7)
= 6x3+5x-3x2-1 + 5x2-4x3-2x+7
=6x3-4x3-3x2+5x2+5x-2x-1+7
=2x3+2x2+3x+6
b) ta có : P(x)-Q(x) = (6x3+5x-3x2-1) - (5x2-4x3-2x+7)
=6x3+5x-3x2-1 - 5x2+4x3+2x-7
=6x3+4x3-3x2- 5x2+5x+2x-1-7
=10x3-8x2+7x-8
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
Ta có: \(P\left(x\right)=-5x^4+3x^3-2x^2+\dfrac{1}{2}x-1\)
\(Q\left(x\right)=6x^4+3x^3-4x^2+\dfrac{1}{2}x-4\)
\(\Rightarrow A\left(x\right)=P\left(x\right)-Q\left(x\right)=-11x^4+2x^2+3\)
cái Q(x)=\(5x^2-4x^3-2x+7\)
mik ghi nhầm xin lổy đc chx
a) \(P\left(x\right)=6x^3-3x^2+5x-1\)
\(Q\left(x\right)=5x^2-4x^2-2x+7=\left(5x^2-4x^2\right)-2x+7=x^2-2x+7\) ( Kết quả này cũng giống như sắp xếp nhé)
a: P(x)=6x^4+5x^3-3x^2+5x-10
Q(x)=5x^4+5x^3+2x^2-4x+4
b: P(x)+Q(x)
=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4
=11x^4+10x^3-x^2+x-6
P(x)-Q(x)
=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4
=x^4-5x^2+9x-14
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
Ta có: \(P\left(x\right)=-2x^4-7x+\frac{1}{2}-3x^4+2x^2-x\)
\(=-5x^4+2x^2-8x+\frac{1}{2}\)
Ta có: \(Q\left(x\right)=3x^3+4x^4-5x^2-x^3-6x+\frac{3}{2}\)
\(=4x^4+2x^3-5x^2-6x+\frac{3}{2}\)
Ta có: R(x)=P(x)-Q(x)
\(=-5x^4+2x^2-8x+\frac{1}{2}-4x^4-2x^3+5x^2+6x-\frac{3}{2}\)
\(=-9x^4-2x^3+7x^2-2x-1\)
Thay x=-1 vào đa thức \(R\left(x\right)=-9x^4-2x^3+7x^2-2x-1\), ta được:
\(R\left(-1\right)=-9\cdot\left(-1\right)^4-2\cdot\left(-1\right)^3+7\cdot\left(-1\right)^2-2\cdot\left(-1\right)-1\)
\(=-9\cdot1+2+7+2-1\)
\(=-9+10=1\)
Vậy: x=-1 không là nghiệm của đa thức R(x)=P(x)-Q(x)
`1)` Yêu cầu là gì ạ?
`2)`
`P(x)-Q(x)=`\((6x^3-3x^2+5x-1)-(-6x^3+3x^2-2x+7)\)
`= 6x^3-3x^2+5x-1+6x^3-3x^2+2x-7`
`= (6x^3+6x^3)+(-3x^2-3x^2)+(5x+2x)+(-1-7)`
`= 12x^3-6x^2+7x-8`
`3)`
`(-3x^3+15x^2+81x):(-3x)`
`= (-3x^3) \div (-3x) + 15x^2 \div (-3x) + 81x \div (-3x)`
`= x^2-5x-27`
1)....
mình làm rồi nên để vậy để đánh dấu thôi