K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

a. 

\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)

\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)

\(=x^4+5x^3-x^2+x+3\)

\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)

\(=-x^4-5x^3+3x^2-x-2\)

b. 

\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)

\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)

\(=2x^2+1\)

c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)

\(\Rightarrow2x^2+1=0\)

     \(2x^2\)      \(=-1\)

         \(x^2\)      \(=\frac{-1}{2}\)  

mà \(x^2\ge0\)

\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm

học tốt

Nhớ kết bạn với mình đó

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

10 tháng 4 2020

dsssws

a: P(x)=2x^3-x^2+3x+20

Q(x)=-x^3-x^2-3x-4

b: K(x)=2x^3-x^2+3x+20-x^3-x^2-3x-4

=x^3-2x^2+16

H(x)=2x^3-x^2+3x+20+x^3+x^2+3x+4

=3x^3+6x+24

c: K(-2)=(-2)^3-2*(-2)^2+16=0

=>x=-2 là nghiệm của K(x)

H(-2)=3*(-2)^3+6*(-2)+24=24-12-3*8=-12<>0

=>x=-2 ko là nghiệm

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm 

a: P(x)=x^3-x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3

N(x)=P(x)-Q(x)

=x^3-x^2+x+2+x^3-x^2+x-1

=2x^3-2x^2+2x+1

c: M(x)=3

=>M(x) ko có nghiệm

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)