K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\left(x\right)=3x^2-x-1\)

\(Q\left(x\right)=-3x^2-4x-2\)

b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)

c: Để G(x)-6x-1=0 thì 6x2-3x=0

=>3x(2x-1)=0

=>x=0 hoặc x=1/2

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

23 tháng 4 2020

a) Bậc P(x)  = 4 + 3 + 1 = 8 

Bậc của Q (x) = 2 + 3 + 1 = 6

b) P(x) + Q ( x) = x4 + x3 -2x + 1 + 2x2 -2x3 + x-  5 

                          = x4 -x3 + 2x2 -x - 4

  P(x) - Q (x)   = x4 +x3 -2x + 1 - 2x2 -2x3 + x - 5 

                        = x4 + 3x 3 -2x2 - 3x + 6

23 tháng 4 2020

a) Bậc của đa thức P(x) là: 4+3+1=8

    Bậc xủa đa thức Q(x) là: 2+3+1=6

b) P(x)+Q(x)=(x4+x3-2x+1)+(2x2-2x3+x-5)

    P(x)+Q(x)=x4+x3-2x+1+2x2-2x3+x-5

    P(x)+Q(x)=x4-x3+2x2-x-4

  

    P(x)-Q(x)=(x4+x3-2x+1)-(2x2-2x3+x-5)

    P(x)-Q(x)=x4+x3-2x+1-2x2+2x3-x+5

    P(x)-Q(x)=x4+3x3-2x2-3x+6

3 tháng 5 2023

a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)

Bậc của P(x) là 3

\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)

Bậc của Q(x) là 3

b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)

3 tháng 5 2023

Mình cảm ơn

29 tháng 3 2022

cho ít thôi

3 tháng 4 2022

dễ mờ

6 tháng 8 2016

mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha

BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN

18 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)

                       \(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)

                      \(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)

                      \(=3x^4+4x^3-2x+4\)

\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)

\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)

\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)

9 tháng 3 2023

Trên là 3 xuống thành 2 rồi :v 

Chỗ :  \(-x^2\) 

9 tháng 3 2023

` P(x) = x^3-2x^2+x-2`

`Q(x) = 2x^3 - 4x^2+ 3x – 5​​​​6`

a) `P(x) -Q(x)`

`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`

`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`

`= -x^2 +2x^2 -2x +54`

b) Thay `x=2` vào `P(x)` ta đc

`P(2) = 2^3 -2*2^2 +2-2`

`= 8-8+2-2 =0`

Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`

Thay `x=2` vào `Q(x)` ta đc

`Q(2) = 2*2^3 -4*2^2 +3*2-56`

`=16 -16+6-56`

`= -50`

Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`

23 tháng 5 2018

a) \(P_{\left(x\right)}=3x^2+2x^3+2x+5-x^2-x-5\)

\(P_{\left(x\right)}=2x^3+2x^2+x\)

\(Q_{\left(x\right)}=x^3-2x-2+3x-x^2+1\)

\(Q_{\left(x\right)}=x^3-x^2+x-1\)

b) ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+2x^2+x\right)+\left(x^3-x^2+x-1\right)\)

                                     \(=\left(2x^3+x^3\right)+\left(2x^2-x^2\right)+\left(x+x\right)-1\)

                                      \(=3x^3+x^2+2x-1\)

ta có: \(P_{\left(x\right)}-Q_{\left(x\right)}=\left(2x^3+2x^2+x\right)-\left(x^3-x^2+x-1\right)\)

                                \(=\left(2x^3-x^3\right)+\left(2x^2+x^2\right)+\left(x-x\right)+1\)

                                 \(=x^3+3x^2+1\)