K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

a)M(x)=(x2+2x-5)+(x2-9x+5)

= x2+2x+(-5)+x2+(-9x)+5

=2x2-7x

N(x)=(x2+2x-5)-(x2-9x+5)

=x2+2x+(-5)+(-x2)+9x+(-5)

= 11x-10

b) M(x)=2x2-7x

Ta có: 2x2-7x=0

x(2x-7)=0

TH1:x=0

TH2:2x-7=0

=>x=\(\dfrac{7}{2}\)

Vậy x=0 và \(\dfrac{7}{2}\)là nghiệm đa thức M(x)

N(x)=11x-10

Ta có:11x-10=0

11x=10

=>x=\(\dfrac{10}{11}\)

Vậy x=\(\dfrac{10}{11}\)là nghiệ, đa thức N(x)

Mình mới chỉ giải đc đến đây thui. Mong b thông cảm -.-

2 tháng 7 2018

Câu a,b làm rồi thì mình làm câu c thôi nhỉ...

c) Do N(x) = P(x) \(-\)Q(x) = 11x \(-\) 10 ( tham khảo bạn làm trước )

=> Q(x) \(-\) P(x) = \(-11x+10\)

8 tháng 5 2017

a) P(x)=5x- 3x - x + 7

Q(x)=-5x3- x+ 2x + 2x -3 - 2

b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x+ 2x + 2x - 3 - 2 )

                       =5x- 3x - x + 7 - 5x- x+ 2x + 2x - 3 - 2

                       =(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

           => M = -x2+2

P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)

               = 5x3-3x-x+7+5x3-x2+2x+2x-3-2

               =(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

       => N =10x3 -x2 +2

c)-x2+2=0

-x2=0+2

-x2=2

=>-x2=\(-\sqrt{2}\)

10 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x = 5x3 + ( -3x - x ) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + ( 2x + 2x ) - x2 + ( -3 - 2 ) = -5x3 + 4x - x2 - 5

M(x) = P(x) + Q(x) 

= 5x3 - 4x + 7 + ( -5x3 + 4x - x2 - 5 )

= ( 5x3 - 5x3 ) + ( 4x - 4x ) - x2 + ( 7 - 5 )

= -x2 + 2

N(x) = P(x) - Q(x) 

= ( 5x3 - 4x + 7 ) - ( -5x3 + 4x - x2 - 5 )

= 5x3 - 4x + 7 + 5x3 - 4x + x2 + 5

= ( 5x3 + 5x3 ) + ( -4x - 4x ) + x2 + ( 7 + 5 )

= 10x3 - 8x + x2 + 12

M(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

             <=> x2 = 2

             <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của M(x) là \(\pm\sqrt{2}\)

7 tháng 5 2018

a,M(x)=2x\(^2\)-7x

N(x)=11x-10

b,M(x)0<=>2x\(^2\)-7x=0<=>x(2x-7)=0\(\left\{{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=0\\x=\dfrac{-7}{2}\end{matrix}\right.\)

vậy....

N(x)=0<=>11x-10=0<=>11x=10<=>x=\(\dfrac{10}{11}\)

vậy......

8 tháng 5 2018

a) M(x) = ( x^2 + 2x - 5 ) + ( x^2 - 9x + 5 )

M(x) = x^2 + 2x - 5 + x^2 - 9x + 5

M(x) = ( x^2 + x^2 ) + ( 2x - 9x ) + ( -5 + 5 )

M(x) = 2x^2 - 7x

N(x) = ( x^2 + 2x - 5 ) - ( x^2 - 9x + 5 )

N(x) = x^2 + 2x - 5 - x^2 + 9x - 5

N(x) = ( x^2 - x^2 ) + ( 2x + 9x ) + ( -5 - 5 )

N(x) = 11x - 10

Nhìn tưởng đề sai ... nhưng nó có sai đâu :v

a, Ta có :

 \(P\left(x\right)=5x^3-3x+2-x-x^2+\frac{3}{5}x+3=5x^3-\frac{17}{5}x+5-x^2\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3+4x-5-x^2\)

b, Ta có : 

\(M\left(x\right)=5x^3-\frac{17}{5}x+5-x^2-5x^3+4x-5-x^2=\frac{3}{5}x-2x^2\)

Tương tự vs N(x)

c, Ta có : \(M\left(x\right)=\frac{3}{5}x-2x^2=0\)

\(\Leftrightarrow x\left(\frac{3}{5}-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{3}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{10}\end{cases}}}\)

Câu 2 :

a) *** M(x) = P(x)+Q(x)

P(x) = x2 - 2x - 5

+ Q(x) = x2 + 9x + 5

M(x) = P(x)+Q(x) = 2x2 + 7x

*** N(x) = P(x)-Q(x)

P(x) = x2 - 2x - 5

- Q(x) = x2 + 9x + 5

N(x) = P(x)-Q(x)= -11x -10

b) N (x ) = -11x - 10 = 0

-11x = 10

x = 10 / -11

x = -1

Vậy nghiệm của N(x) = -1

10 tháng 5 2018

câu c ms quan trọng

16 tháng 6 2020

a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3

            = 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)

            = 5x^3 - x^2 - 17/5x + 5

Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2

        = -5x^3 + (2x + 2x) - x^2 + (-3 - 2)

        = -5x^3 + 4x - x^2 - 5

b) M(x) = P(x) + Q(x)

            =  5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5

            = (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x)  + (5 - 5)

            = -2x^2 + 3/5x

N(x) = P(x) - Q(x)

        = 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)

        = 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5

        = (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)

        = 10x^3 - 37/5x + 10

c) M(x) = -2x^2 + 3/5x = 0

<=> -x(2x - 3/5) = 0

<=> -x = 0 hoặc 2x - 3/5 = 0

<=> x = 0 hoặc 2x = 3/5

<=> x = 0 hoặc x = 3/10

Vậy: nghiệm của M(x) là 3/10

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

20 tháng 4 2019

a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)

=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)

P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)

=\(2x^3-4x-x^2+6\)

vậy P(x)+Q(x)=\(-2x+3x^2-4\)

      P(x)-Q(x)=\(2x^3-4x-x^2+6\)

20 tháng 4 2019

a) \(P\left(x\right)=x^3-3x+x^2+1\)

              \(=x^3+x^2-3x+1\)

\(Q\left(x\right)=2x^2-x^3+x-5\)

              \(-x^3+2x^2+x-5\)

                            \(P\left(x\right)=x^3+x^2-3x+1\)

     +

                     \(Q\left(x\right)=-x^3+2x^2+x-5\)

                ___________________________________

  \(P\left(x\right)+Q\left(x\right)=\)          \(3x^2-2x-4\)

Vậy P(x) + Q(x) = 3x^2 - 2x - 4

                       \(P\left(x\right)=x^3+x^2-3x+1\)

     -        

                 \(Q\left(x\right)=-x^3+2x^2+x-5\)

     ____________________________________________

\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)

Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6

      

23 tháng 4 2019

a, P(x) + Q(x) = 1x2 -2x - 4 

   P(x) - Q(x) = 2x- 3x- 4x + 6

b, Tự lm nhé mk chưa nghĩ ra

#Hk_tốt

#Ngọc's_Ken'z