Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H\left(-1\right)=K\left(2\right)\Rightarrow-1+3m+m^2=4+2\left(3m+2\right)+m^2\)
\(\Leftrightarrow-1+3m=8+6m\Leftrightarrow3m=-9\Leftrightarrow m=-3\)
Ta có f(1) = 12 -(m - 1).1 + 3m - 2 = 2m
g(2) = 22 - 2(m + 1).2 - 5m + 1 = -9m + 1
Vì f(1) = g(2) ⇒ 2m = -9m + 1 ⇒ 11m = 1 ⇒ m = 1/11. Chọn D
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
Tìm m để đa thức f(x) = (m -1)x2 – 3mx + 2 có một nghiệm x = 1.
Đa thức f(x) có nghiệm là 1
\(\Rightarrow f\left(1\right)=0\)
\(\Leftrightarrow f\left(1\right)=\left(m-1\right).1.2-3m.1+2\)
\(\Leftrightarrow\left(m-1\right)2-3m+2=0\)
\(\Leftrightarrow2m-2-3m+2=0\)
\(\Leftrightarrow-m=0\)
\(\Leftrightarrow m=0\)
Vậy \(m=0\) thì đa thức \(f\left(x\right)\) có một nghiệm là 1
a: M(1)=3
M(-2)=2
=>a+b=3 và -2a+b=2
=>a=1/3 và b=8/3
b: G(-1)=F(2)
=>(a+1)*(-1)^2-3=5*2+7a
=>a+1-3-10-7a=0
=>-6a-12=0
=>a=-2
Cộng vế theo vế hai phương trình, ta được: f(x)+g(x)+g(x)-f(x)=x2+1+2x \(\Leftrightarrow\) 2g(x)=x2+2x+1 \(\Leftrightarrow\) g(x)=\(\dfrac{1}{2}\)x2+x+\(\dfrac{1}{2}\).
Thế g(x) vào một trong hai phương trình, ta suy ra f(x)=\(\dfrac{1}{2}\)x2-x+\(\dfrac{1}{2}\).
* Ta có:
f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - 1/4 x
= x5 – (3x2 – x2) + 7x4 – 9x3 -1/4.x
= x5 – 2x2 + 7x4 – 9x3 -1/4.x
= x5 + 7x4 – 9x3 – 2x2 - 1/4
g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - 1/4
= 5x4 –x5+ (x2 + 3x2) – 2x3 – 1/4
= 5x4 – x5 + 4x2 – 2x3 – 1/4
= -x5 + 5x4 – 2x3 + 4x2 - 1/4
* f(x) + g(x)
* f(x) - g(x)
??????????
\(f\left(1\right)=1^2+3m\cdot1+1^2=1+3m+1=2+3m\)
\(g\left(1\right)=1^2+\left(2m-1\right)\cdot1+m^2=1+\left(2m-1\right)+m^2=1+2m-1+m^2=2m+m^2\)
Để \(f\left(1\right)=g\left(1\right)\Rightarrow2+3m=2m+m^2\)
\(\Rightarrow2+m=m^2\)
\(\Rightarrow2=m^2-m\)
\(\Rightarrow2=m\left(m-1\right)\)
Ta có 2=-1 x (-2)= 1 x 2
P/S: Tự lập bảng giá trị