\(^2-6x+3x^3vàg\left(x\right)=-9+7x^4+2x^2+2x^3\)

a.sắp xếp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

3 tháng 6 2015

a)f(x)=-x5-7x4-2x3+x2+4x+9

g(x)=x5+7x4+2x3+2x2-3x-9

b)h(x)=f(x)+g(x)

=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)

=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9

=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9

=3x2+x

Vậy h(x)=3x2+x

c)ta có h(x)=0

=>3x2+x=0

x(3x+1)=0

x=0 hoặc 3x+1=0

x=0 hoặc x=-1/3

vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3

12 tháng 5 2019

+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3

P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014

P(x) = x4 + 4x2 + 2014

Sắp xếp : P(x) = x4 + 4x2 + 2014

+) Ta có: x4 \(\ge\)0;     4x2 \(\ge\)0  ;  2014 > 0

=> x4 + 4x2 + 2014 > 0

=> P(x) vô nghiệm

12 tháng 5 2019

\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)

\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)

\(=x^4+4x^2+2014\)

Sắp xếp P(x) = x4 + 4x2 + 2014

Ta có: \(x^4\ge0\forall x\)

\(x^4+4x^2\ge0\forall x\)

2014 > 0

=> P(x) vô nghiệm

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

31 tháng 5 2018

f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)

g(x)=\(x^5-7x^4+4x^3-3x-9\)

f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)

=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))

=\(-14x^4+2x^3+x^2+x\)

31 tháng 5 2018

a) Sắp xếp các đa thức theo lũy thừa giảm của biến :

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)

b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)

=> h(x) = -14x4 + 2x3 + x2 +x

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)