K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

A(-1) = -8.(-1)2 + 5.(-1) + 2

= 8 - 5 + 2 = 5

B(2) = -8.22 - 3.2 - 1

= -32 - 6 - 1

= - 39

b) A(x) + B(x)  = -8x2 + 5x + 2 + (-8x2 - 3x - 1) 

                         = - 16x+ 2x + 1

A(x) - B(x) =  -8x2 + 5x + 2 - (-8x2 - 3x - 1) 

                 = 8x + 3

c) Để A(x) = B(x) 

=> -8x2 + 5x + 2 = -8x2 - 3x - 1 

=> 8x = -3

=> x = \(-\frac{3}{8}\)

Vậy với x = \(-\frac{3}{8}\)thì A(x) = B(x)

2 tháng 5 2021

a, Ta có : \(A\left(1\right)=-8+5+2=-1\)

\(B\left(2\right)=-8.4-3.2-1=-32-8-1=-41\)

b, Ta có : \(A\left(x\right)+B\left(x\right)\)hay \(-8x^2+5x+2-8x^2-3x-1=-16x^2+2x+1\)

\(A\left(x\right)-B\left(x\right)\)hay \(-8x^2+5x+2+8x^2+3x+1=8x+3\)

`@` `\text {Đáp án}`

`\downarrow`

`a,`

`A(x)+B(x)=`\(\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)+8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\)

`= 3x^4-3/4x^3+2x^2-3+8x^4+1/5x^3-9x+2/5`

`= (3x^4+8x^4)+(-3/4x^3+1/5x^3)+2x^2-9x+(-3+2/5)`

`= 11x^4-11/20x^3+2x^2-9x-13/5`

`b,`

`A(x)-B(x)=`\(3x^4-\dfrac{3}{4}x^3+2x^2-3-\left(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}\right)\)

`=3x^4-3/4x^3+2x^2-3-8x^4-1/5x^3+9x-2/5`

`= (3x^4-8x^4)+(-3/4x^3-1/5x^3)+2x^2+9x+(-3-2/5)`

`= -5x^4 -19/20x^3+2x^2+9x-17/5`

`c,`

`B(x)-A(x)=`\(8x^4+\dfrac{1}{5}x^3-9x+\dfrac{2}{5}-\left(3x^4-\dfrac{3}{4}x^3+2x^2-3\right)\)

`= 8x^4+1/5x^3-9x+2/5 - 3x^4+3/4x^3-2x^2+3`

`= (8x^4-3x^4)+(1/5x^3-3/4x^3)-2x^2-9x+(2/5+3)`

`= 5x^4 + 19/20x^3 -2x^2 -9x+17/5`

a: A(x)+B(x)=11x^4-11/20x^3+2x^2-9x-13/5

b: A(x)-B(x)=-5x^4-19/20x^3+2x^2+9x-17/5

c: B(x)-A(x)=5x^4+19/20x^3-2x^2-9x+17/5

a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc...
Đọc tiếp

a)Tính giá trị biểu thức A= 2x³ – 3x² + 5x –1 tại x= -2 b) tính nghiệm của đa thức A(x) = x–7 c) cho hai đa thức A(x) = 1 + 3x³ – 5x² + x + 4x⁵ B(x)= 3x³ – x⁴ + 3x² + 6x⁵ – 5 • Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến • Tính A(x) + B(x) d) cho góc nhọn xOy. Gọi M là một điểm thuộc tia phân giác Oz của góc xOy. Vẽ AM vuông góc với Ox (A thuộc Ox), MB vuông góc với Oy (B thuộc Oy) Chứng minh: - MA= MB - đường thẳng BM cắt Ox tại H. Đường thẳng AM cắt Oy tại K. Chứng minh tam giác AMH = tam giác BMK - gọi I là giao điểm của tia Oz và HK. chứng minh OI vuông góc với HK - cho góc xOy = 60⁰. Chứng minh tâm giác OHK đều e) cho tam giác ABC cân tại A có AB = 15cm, BC= 18cm. Vẽ đường phân giác AH của góc BAC ( H thuộc BC). Chứng minh: - tam giác ABH = tam giác ACH - vẽ trung tuyến BM ( M thuộc AC ) cắt AH tại G. Chứng minh G là trọng tâm của tam giác ABC - tính độ dài AH. Từ đó tính độ dài AH - từ H vẽ HK// AC. Chứng minh C,G,K thẳng hàng

1

e:

Xét ΔABH và ΔACH có

AB=AC
góc BAH=góc CAH

AH chung

=>ΔABH=ΔACH

Xét ΔABC có

AH,BM là trung tuyến

AH cắt BM tại G

=>G là trọng tâm

BH=CH=9cm

=>AH=căn 15^2-9^2=12cm

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trug điểm của AB

=>C,G,K thẳng hàng

d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

góc AOM=góc BOM

=>ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAH vuông tại A và ΔMBK vuông tại B có

MA=MB

góc AMH=góc BMK

=>ΔMAH=ΔMBK

OA+AH=OH

OB+BK=OK

mà OA=OB và AH=BK

nên OH=OK

=>ΔOHK cân tại O

mà OI là phân giác

nên OI vuông góc HK

b: A(x)=0

=>x-7=0

=>x=7

15 tháng 5 2023

Để tìm đa thức B(x), ta cần lấy A(x) trừ đi đa thức 2x^3 - x^2 + 3x + 1

A(x) - (2x^3 - x^2 + 3x + 1) = (-3x^3 + 4x + 5x^3 + x^2 - 8x-2)- (2x^3-x^2 + 3x + 1)

=-3x^3 + 4x + 5x^3 + x^2 - 8x-2- 2x^3 + x^2-3x-1

= 2x^3 + 6x

Vậy đa thức B(x) = -2x^3 - 6x.

17 tháng 6 2019

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

17 tháng 6 2019

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)