Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó lắm bạn tôi làm vòng 10 có 280đ thôi chắc không đậu cấp trường
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
1) \(3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+1=3\left(x+\frac{1}{3}\right)^2+1\ge1\Rightarrow Min=1\Leftrightarrow x=-\frac{1}{3}\)
2) \(2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2-2xy+y^2+3xy\right)-3\left(x^2-2xy+y^2+4xy\right)=\left(x-y\right)^2\left(12xy-12xy\right)=0\)
3) đặt \(2x-1=t\Rightarrow x^2=\frac{t+1}{2}^2\Leftrightarrow\left(t+2\right)^3-4\frac{t+1}{2}^2\left(t-2\right)-5=0\Leftrightarrow\left(t+2\right)^3-\left(t+1\right)^2\left(t-2\right)-5=0\)\(\Leftrightarrow t^3+6t^2+12t+8-t^3-2t^2+t+2t^2+4t+2=0\Leftrightarrow6t^2+16t+10=0\Leftrightarrow\left(t+1\right)\left(6t+10\right)=0\)
=> t=-1 hoặc t=-10/6 \(\Leftrightarrow2x-1=-1\Leftrightarrow x=0\) hoặc \(2x-1=-\frac{10}{6}\Leftrightarrow x=-\frac{1}{3}\)
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
\(A=x-y\)
+x<y => A<0
+ x>/ y =>\(A^2=\left(x-y\right)^2=\left(1.x+1.\left(-y\right)\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=\frac{2.2025}{2}\)
\(A\le45\)
=> Max \(A=45\) => x = -y => 4 x2 = 2025 => x =-y = 45/2
Vậy x =45/2 ; y =-45/2