Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)
Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn
Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)
Câu 2: đáp án D
\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)
Câu 3: đáp án D
\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)
Câu 4:
\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)
Câu 5:
\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C
Câu 6:
Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề
Câu 7:
\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)
\(\Leftrightarrow x-3y+1< 0\)
Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng
Câu 8:
Thay tọa độ vào chỉ đáp án D thỏa mãn
Câu 9:
Đáp án C đúng
Câu 10:
Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)
a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)
\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)
b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)
c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\)
\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)
\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)
\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)
mấy câu kia cũng dùng Vi-ét xử tiếp nha
ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\) (với \(\left|a\right|\ge2\))
Phương trình trở thành:
\(a^2-2-2ma+2m+1=0\Leftrightarrow a^2-2ma+2m-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)-2m\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=2m-1\end{matrix}\right.\)
Để pt có nghiệm \(\Leftrightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\ge\frac{3}{2}\\m\le-\frac{1}{2}\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -3\end{matrix}\right.\)
Xét (1), đặt \(f\left(x\right)=x^2-m\left(m^2+1\right)+m^4\), ta có:
\(\Delta=m^2\left(m^2+1\right)^2-4m^4=m^2\left(m^2-1\right)^2\ge0\) ; \(\forall m\)
Nếu \(\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm (ktm)
Nếu \(m\ne\left\{0;\pm1\right\}\) \(\Rightarrow\) nghiệm của (1) đều là nghiệm của (2) khi và chỉ khi: \(\left[{}\begin{matrix}x_1< x_2\le-3\\x_2>x_1\ge-1\end{matrix}\right.\)
TH1: \(x_1< x_2\le-3\Leftrightarrow\left\{{}\begin{matrix}f\left(-3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+3m^3+3m+9\ge0\\m^3+m< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+3\right)\left(m+3\right)\ge0\\\left(m^3+3\right)+\left(m+3\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^3+3\le0\\m+3\le0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
TH2:
\(x_2>x_1\ge-1\Leftrightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+m^3+m+1\ge0\\m^3+m>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+1\right)\left(m+1\right)\ge0\\\left(m^3+1\right)+\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^3+1\ge0\\m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-1\)
Kết hợp điều kiện delta, ta được đáp án B đúng