K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TH
12 tháng 9 2018
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
a) A có nghĩa khi:
\(\left(x+1\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\x-3\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\ge3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-1\end{matrix}\right.\)
b) Ta có:
\(B=\sqrt{x+1}\cdot\sqrt{x-3}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
Nên: A=B nên tập nghiệm xác định như nhau
c) \(A=B\) khi:
\(\sqrt{\left(x+1\right)\left(x-3\right)}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow1=1\) (luôn đúng)
\(\Rightarrow x\in R\)