Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để \(M=N\) thì \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\), ta có:
\(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\\ \Leftrightarrow\frac{2}{3}x-\frac{1}{3}=3x-2x+2\\ \Leftrightarrow\frac{2}{3}x-3x+2x=\frac{1}{3}+2\\ \Leftrightarrow\frac{-1}{3}x=\frac{7}{3}\\ \Leftrightarrow x=-7\)
Vậy \(x=-7\) để \(M=N\)
b. Để \(M+N=8\) thì \(\frac{2}{3}x-\frac{1}{3}+\left[3x-2\left(x-1\right)\right]=8\), ta có:
\(\frac{2}{3}x-\frac{1}{3}+\left[3x-2\left(x-1\right)\right]=8\\\Leftrightarrow \frac{2}{3}x-\frac{1}{3}+\left[3x-2x+2\right]=8\\\Leftrightarrow \frac{2}{3}x-\frac{1}{3}+3x-2x+2=8\\ \Leftrightarrow\frac{2}{3}x+3x-2x=\frac{1}{3}-2+8\\\Leftrightarrow \frac{5}{3}x=\frac{19}{3}\\\Leftrightarrow x=\frac{19}{5}\)
Vậy \(x=\frac{19}{5}\) để \(M+N=8\)
a, Để M=N thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}=3x-2\left(x-1\right)\\ \Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=3x-2x+2\\ \Leftrightarrow x-\dfrac{2}{3}x=2+\dfrac{1}{3}\\ \Leftrightarrow\dfrac{1}{3}x=\dfrac{7}{3}\\ \Leftrightarrow x=7\)
b, Để M+N=8 thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}+3x-2x+2=8\) (mình làm tắt nhé :>)
\(\Leftrightarrow\dfrac{5}{3}x=8+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{29}{3}\)
\(\Leftrightarrow5x=29\\ \Leftrightarrow x=\dfrac{29}{5}\)
Chúc bạn học tốt nha
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
Bài 2:
a, Sửa đề:
\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\)
b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)
\(=\left(a-4\right)\left(a+6\right)\)(2)
Vì \(a=x^2+7x+10\) nên
\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
1,
Dùng định lý Bơ du :
\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)
\(=>a=5\)
Vậy a = 5 thì A chia hết cho B .
b,
M = \(x^2-4x+4y^2+4y+5\)
= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)
Vậy GTNN của M = 0
khi x = 2 ; 2y + 1 = 0 => y = 1/2
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
Bài 1.
a) ( x - 2)2 - ( x + 3)( x - 3)= 17
=> x2 - 4x + 4 - x2 + 9 - 17 = 0
=> -4x - 4 = 0
=> -4( x + 1 ) = 0
=> x = -1
Vậy,...
b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10
=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0
=> - 24x + 36 - 9 = 0
=> -24x + 27 = 0
=> -3( 8x - 9) = 0
=> x = \(\dfrac{9}{8}\)
Vậy,...
c) ( x - 4)2 - ( x - 2)( x + 2)= 36
=> x2 - 8x + 16 - x2 + 4 - 36 = 0
=> -8x - 16 = 0
=> -8( x + 2) = 0
=> x = -2
d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10
=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0
=> 12x = 0
=> x = 0
Vậy,...
Bài 2.
\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a) ĐKXĐ : ( x + 1)( 2x - 6) # 0
=> 2( x + 1)( x - 3) # 0
=> x # -1 ; x # 3
Vậy,...
b) Để P = 1
=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)
=> 3x = 2x - 6
=> x = -6 ( thỏa mãn ĐKXĐ)
Vậy,...
Bài 3.
P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
a) Để P có nghĩa tức P xác định .
ĐKXĐ : x - 1 # 0 => x # 1
* 1 - x2 # 0 => x # 1 ; x # -1
Vậy,...
b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)
c) Để P = -1 thì :
\(\dfrac{1}{x+1}=-1\)
=> -x - 1 = 1
=> x = -2 ( thỏa mãn ĐKXĐ )
Vậy,...
a, Theo bài ra ta có : M = N
hay \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\)
\(\Leftrightarrow\frac{2x-1}{3}=3x-2x+2\)
\(\Leftrightarrow\frac{2x-1}{3}=x+2\Leftrightarrow\frac{2x-1}{3}=\frac{3x+6}{3}\)
Khử mẫu : \(\Rightarrow2x-1=3x+6\Leftrightarrow-x-7=0\Leftrightarrow x=-7\)
b, Theo bài ra ta có : M + N = 8
hay \(\frac{2x}{3}-\frac{1}{3}+2x-2\left(x-1\right)=8\)
\(\Leftrightarrow\frac{2x-1}{3}+2x-2x+2=8\)
\(\Leftrightarrow\frac{2x-1}{3}-6=0\Leftrightarrow\frac{2x-1-18}{3}=0\Leftrightarrow2x-19=0\Leftrightarrow x=\frac{19}{2}\)