Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)
Với \(x\ne\pm3;x\ne-6\), ta có:
\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)
Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)
b) Ta có: \(2x-\left|4-x\right|=5\)
+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)
\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)
+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)
\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)
Với \(x\ne\pm3;x\ne-6\)
Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)
Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.
c) Với \(x\ne\pm3;x\ne-6\)
Để P nhận giá trị nguyên
thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)
\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)
Mà \(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Lập bảng giá trị:
\(x-3\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(0\left(TM\right)\) | \(2\left(TM\right)\) | \(4\left(TM\right)\) | \(6\left(KTM\right)\) |
Vậy để P nhận giá trị nguyên
thì \(x\in\left\{0;2;4\right\}\)
d) Với \(x\ne\pm3;x\ne-6\)
Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)
Đặt \(\dfrac{3}{x-3}=y\)
\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
Dấu "=" xảy ra khi:
\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)
Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)
a:\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}=\dfrac{x+1}{x-1}\)
b: Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-1\right)=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
a) ĐKXĐ \(\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
b) Để A > 0 thì \(\dfrac{x-4}{x-2}>0\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)
Kết hợp ĐK thì \(\left[{}\begin{matrix}x< 2,x\ne-3\\x>4\end{matrix}\right.\)
c) \(A=\dfrac{x-4}{x-2}=1+\dfrac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0;1;3;4\right\}\)
Khi thay vào A để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Hok tốt!
\(A=\left(\dfrac{x+y}{y}+\dfrac{2y}{x-y}\right)\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\left(\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\right)\cdot\dfrac{1-2x}{x+2}\)
\(=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{x+2}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)
\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)
a ) \(A=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(A=3x+15+x-3-2\left(x+3\right)\)
\(A=4x+10-2x-6\)
\(A=2x+4\)
b ) Để \(A=\dfrac{1}{2}\) thì \(2x+4=\dfrac{1}{2}\), ta có :
\(2x+4=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\dfrac{1}{2}-4\)
\(\Leftrightarrow2x=\dfrac{-7}{2}\)
\(\Leftrightarrow x=\dfrac{-7}{4}\)
Vậy để \(A=\dfrac{1}{2}\) thì \(x=\dfrac{-7}{4}\)
a) Rút gọn :
P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)
\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)
\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)
b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)
* TH1 : x \(\ge0\)
\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)
* TH2 : x < 0
\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)
c) Để P = \(\dfrac{-1}{2}\) thì :
\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x+8=3-x\)
\(\Leftrightarrow2x+x=-8+3\)
\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)
d) P \(\le\) 2
<=> \(\dfrac{x+4}{x-3}\le2\)
\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)
\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)
Lập bang xét dấu và tìm x nhé!!
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài