Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(a)P=\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}+\dfrac{2x}{x-1}\\ P=\dfrac{\sqrt{x}+1+\sqrt{x}-1+2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}+2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
a: \(P=\dfrac{\sqrt{x}+1+\sqrt{x}-1+2x}{x-1}=\dfrac{2x+2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
b: Để P>-1/2 thì P+1/2>0
\(\Leftrightarrow\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{2}>0\)
=>\(\dfrac{5\sqrt{x}-1}{2\left(\sqrt{x}-1\right)}>0\)
=>1/5<căn x<1
=>1/25<x<1
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
Bài 1:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
b: \(P=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
c: Để \(P=\dfrac{1}{2}\) thì \(2\sqrt{x}-6=\sqrt{x}-2\)
hay x=16
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
a: \(=\dfrac{\sqrt{x}+1-2x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2}{\sqrt{x}+1}\)
b: Để D=-1/2 thì \(\sqrt{x}+1=4\)
=>x=9
`a)`\(P=A:B\)
\(P=\left(\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)\)
\(P=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{2-x\left(x+1\right)+\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-x^2}{\left(x-1\right)\left(x+1\right)}\)
\(P=-\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}\)
`b)`\(P=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(2x^2+2\right)=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow4x^2+4=x^2-1\)
\(\Leftrightarrow3x^2=-5\) ( vô lý )
Vậy không có giá trị `x` thỏa mãn `P=1/2`
help^^