Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hai trường hợp trên ta nhận thấy ảnh đều cao hơn vật.
\(\Rightarrow\)Thấu kính hội tụ.
Vật \(AB=h\)
\(\Rightarrow\) Trong hai trường hợp:
TH1: Độ cao ảnh là:
\(A'B'=2AB=2h\)
TH2: Độ cao ảnh là:
\(A'B'=3AB=3h\)
a) vị trí của vật : cách thấu kính 40cm do vật nằm ngoài khoảng tiêu cự nên khoảng cách từ ảnh đến thấu kính bằng khoảng cách của vật đến thấu kính
b) Do vật cách thấu kính 1 khoảng d' = d
Áp dụng công thức : \(h'=\dfrac{d'}{d}.h\)
=> \(h'=1.h=1.15=15cm\)
Câu 1.
Khoảng cách từ ảnh đến thấu kinh:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{d'}=\dfrac{1}{d}+\dfrac{1}{f}=\dfrac{1}{30}+\dfrac{1}{15}=\dfrac{1}{10}\)
\(\Rightarrow d'=10cm\)
Độ cao vật: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{h}{18}=\dfrac{30}{10}\Rightarrow h=54cm\)
Câu 2.
Bạn tự vẽ hình nha!!!
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{60}=\dfrac{1}{d'}-\dfrac{1}{40}\Rightarrow d'=24cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{40}{24}\Rightarrow h'=1,2cm\)
Tham khảo:
Ảnh thật, ngược chiều, lớn hơn vật và cách thấu kính một khoảng 60cm.
Lời giải:
giải tính chiều cao:
ΔOAB ∼ ΔOA'B'
=> \(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\left(1\right)\)
ta lại có :
Δ OIF ∼ Δ A'B'F'
=> \(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'B'}\left(2\right)\)
Từ (1) và (2) suy ra : \(\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}\left(3\right)\)
mà : A'F' = OA' - OF ' (4)
thay số vào (3) và (4) ta được : OA' = 60cm