Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 1<hoặcc<hoặc=b<hoặc=a<hoặc=2
=>a+b+c<hoặc=6(1)
lại có:1/a+1/b+1/c<hoặc=3/2(2)
từ (1)và(2) =>(a+b+c)(1/a+1/b+1/c)<hoặc=6.3/2=9<hoặc=10
Bạn tham khảo:
https://hoc24.vn/hoi-dap/question/862431.html
ta co
(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))<=10
<=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)(1)\(\le7\)
That vay ta co
Do a,b,c co vai tro nhu nhau nen ta gia su a>=b>=c
=>(a-b)(b-c)>=0
=> ab+bc>=b2+ac
Do a,b,c khac 0
=>\(\hept{\begin{cases}1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\\1+\frac{a}{c}\ge\frac{b}{c}+\frac{a}{b}\end{cases}}\)
=> 2+2(\(\frac{c}{a}+\frac{a}{c}\))>=(1)
Do a,b,c thuoc [1;2]
=> a/c<=2; c/a<=1/2
=>\(\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\le7\)
=> (a+b+c)(1/a+1/b+1/c)<=10
Ta có (a+b+c)(1/a+1/b+1/c)=3+a/b + a/c + b/a + b/c + c/a + c/b ≤ 10
<=> a/b+b/a+b/c+c/a+c/b ≤ 7
Giả sử 1 ≤ c ≤ b ≤ a ≤ 2 thì:
(1 - a/b)(1 - b/c) + (1 - b/a)(1 - c/b) ≥ 0
<=> 2 + a/c + c/a ≥ a/b + b/a + b/c + c/b
<=> 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
Do 1≤ a,c ≤2
=> 1/2≤ a/c ≤ 2
=> (a/c-2)(a/c-1/2) ≤ 0
=> a/c+c/a ≤ 5/2
Mà 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> 7 ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> (a+b+c)(1/a+1/b+1/c) ≤ 10
a) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2=abc\)
\(\Rightarrow a^2b+2abc+bc^2+ab^2+b^2c+a^2c+ac^2=0\)
\(\Rightarrow b\left(a^2+2ac+c^2\right)+\left(ab^2+b^2c\right)+\left(a^2c+ac^2\right)=0\)
\(\Rightarrow b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=0\)
\(\Rightarrow\left(a+c\right)\left(ab+bc+b^2+ac\right)=0\)
\(\Rightarrow\left(a+c\right)\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]=0\)
\(\Rightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)\(\left[đpcm\left(a\right)\right]\)
\(\Rightarrow\)* \(a+b=0\Rightarrow a=-b\)
* \(b+c=0\Rightarrow b=-c\)
* \(a+c=0\Rightarrow a=-c\)
Trường hợp 1 : Nếu \(a=-b\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}\)\(=\frac{1}{b^3}-\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
Mà : \(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)\(\left[đpcm\left(b\right)\right]\)
Hai trường hợp còn lại xét tương tự nhé
\(VT=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(=3+\frac{6abc}{abc}\)
\(\Rightarrow9\le10\left(đpcm\right)\)
P/s: Còn cách dài dòng hơn nhé
\(VT=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)
\(=3+\frac{6abc}{abc}\)
\(\Rightarrow9\le10\left(đpcm\right)\)