Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K a, Vẽ phân giác AD của góc BAC
Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K
Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)
b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)
Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)
\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(a+b+c\right)^2\cdot\dfrac{81}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16\cdot\left(\dfrac{3}{2}\right)^2}}\)
\(=\dfrac{3\sqrt{17}}{2}\)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Cách khác :)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+16\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Rightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)
Tương tự : \(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c};\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)
Cộng theo vế của 3 bất đẳng thức :
\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge\left(a+b+c\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\sqrt{17}\cdot P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Áp dụng bất đẳng thức Cô-si:
Xét \(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)
\(\ge2\sqrt{\frac{16\cdot4a}{a}}+2\sqrt{\frac{16\cdot4b}{b}}+2\sqrt{\frac{16\cdot4c}{c}}-15\left(a+b+c\right)\)
\(=16\cdot3-15\cdot\frac{3}{2}=\frac{51}{2}\)
Ta có : \(\sqrt{17}\cdot P\ge\frac{51}{2}\)
\(\Leftrightarrow P\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Ta có:
\(\left(a+1\right)^2+b^2+1=a^2+2a+b^2+2\)\(\ge2ab+2a+2\)
\(\Rightarrow\dfrac{1}{\left(a+1\right)^2+b^2+1}\le\dfrac{1}{2\left(ab+a+1\right)}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{\left(b+1\right)^2+c^2+1}\le\dfrac{1}{2\left(bc+b+1\right)};\dfrac{1}{\left(c+1\right)^2+a^2+1}\le\dfrac{1}{2\left(ca+c+1\right)}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{2}\left(\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ca+c+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{bc}{b+1+bc}+\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{bc+b+1}{bc+b+1}=\dfrac{1}{2}=VP\)
Xảy ra khi \(a=b=c=1\)
Ta có: \(-1\le a,b,c\le2\Rightarrow a+1\ge0;a-2\le0\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\Leftrightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2\)
\(c^2\le c+2\)
Cộng vế theo vế, ta được:
\(a^2+b^2+c^2\le a+b+c+2+2+2=6\)
Vậy ta có đpcm
@Ace Legona,@Akai Haruma giúp mình