K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{4a^2b^2}=2|2ab|\geq 4ab$

$\frac{a^2}{2}+8c^2\geq 2|2ac|\geq 4ac$

$2b^2+2c^2\geq 2\sqrt{4b^2c^2}=2|2bc|\geq 4bc$

Cộng theo vế các BĐT trên:

$\Rightarrow a^2+10b^2+10c^2\geq 4(ab+bc+ac)=4$ (đpcm)

Dấu "=" xảy ra khi \(a=4b=4c=\pm \frac{4}{3}\)

12 tháng 5 2018

<=>2ab+2bc+2ca<=1=1^2=(a+b+c)^2

<=>a^2+b^2+c^2+2ab+2bc+2ca>=2ab+2bc+2ca

<=>a^2+b^2+c^2>=0

a,b,c khong dong thoi =0

=> dang thuc khong xay ra

=> ab+bc+ca<1/2=>dpcm

14 tháng 5 2018

(a+b+c)=1

a^2+b^2+c^2+2ab+2bc+2ca=1

a^^2+b^2+c^2>=0

=>2ab+2bc+2ca<=1

Đẳng thức khi (a+b+c=1 &0=> vô nghiệm

=> 2ab+2bc+2ca<1

=>ab+2bc+2ca<1/2

=>đpcm

28 tháng 8 2018

Ta có:

\(a+b+c=1\)

\(\Rightarrow\left(a+b+c\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1\)

\(\Rightarrow2ab+2ac+2bc=1-a^2-b^2-c^2\)

\(\Rightarrow2\left(ab+ac+bc\right)=1-a^2-b^2-c^2\)

\(1-a^2-b^2-c^2< 1\)

\(\Rightarrow2\left(ab+ac+bc\right)< 1\)

\(\Rightarrow ab+ac+bc< \dfrac{1}{2}\)

24 tháng 3 2018

a + b + c =1 ⇔ (a + b + c)2 = 1

⇔ a2 + b2 + c2 + 2ab +2ac +2bc = 1

⇔2(ab + bc +ca) = 1 - a2 + b2 + c2

⇒2(ab + bc + ca) < 1

⇔ ab + bc +ca < \(\dfrac{1}{2}\)

29 tháng 3 2016

k mình mình sẽ trả lòi

29 tháng 3 2016

là sao hả bạn

7 tháng 9 2018

A B C M I H

a) Theo đề bài ta có :

\(MI//CA\) ( GT)

=> ACMI là hình thang ( định nghĩa)

Xét hình thang ACMI ta có :

\(\widehat{A}=90^o\)

=> ACMI là hình thang vuông  

9 tháng 9 2018

@TrầnHươngGiang phần b,c đâu bn'