Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
B = (3^2023 - 3^2022) + (3^2021 - 3^2020) + ... + (3 - 1)
= 3^2022(3 - 1) + 3^2020(3 - 1) + ... + 1(3 - 1)
= 2(3^2022 + 3^2020 + ... + 1)
Đặt: A = 3^2023 + 3^2021 + ... + 3 B = 3^2022 + 3^2020 + ... + 1
Ta có: B = A - 3^2022 A = 3B
=> 2B = A
Mặt khác: A + B = 3^2023 + 3^2022 + 3^2021 + ... + 3 + 1 Đây là tổng của một cấp số nhân với công bội là 3.
=> A + B = (3^2024 - 1) / 2
Từ đó suy ra: B = (A + B) / 2 - A = (3^2024 - 1) / 4 - A
= (3^2024 - 1 - 4A) / 4
-
Nhóm 5 số hạng liên tiếp: Ta sẽ nhóm B thành các nhóm 5 số hạng liên tiếp. Mỗi nhóm sẽ có dạng: 3^k - 3^(k-1) + 3^(k-2) - 3^(k-3) + 3^(k-4) = 3^(k-4)(3^4 - 3^3 + 3^2 - 3 + 1) = 3^(k-4) * 61
-
Phân tích:
- Ta thấy 61 không chia hết cho 5.
- Tuy nhiên, khi nhân 61 với các lũy thừa của 3, ta sẽ luôn thu được một số có chữ số tận cùng là 3.
- Khi trừ đi các số hạng tiếp theo (3^(k-1), 3^(k-2), ...), chữ số tận cùng của kết quả vẫn sẽ là 3 hoặc 8 (do 3 - 1 = 2, 8 - 1 = 7).
- Quan trọng: Không có số nào có chữ số tận cùng là 3 hoặc 8 mà chia hết cho 5.
Kết luận:
- Từ phân tích trên, ta thấy mỗi nhóm 5 số hạng liên tiếp khi cộng lại sẽ không chia hết cho 5.
- Do đó, B cũng sẽ không chia hết cho 5.
Kết luận chung:
- Chúng ta đã chứng minh được B chia hết cho 2.
- Tuy nhiên, B lại không chia hết cho 5.
Tham khảo
\(\text{+)}\)Ta có:\(5\equiv-1\left(mod3\right)\)
\(\Rightarrow5^{2022}\equiv\left(-1\right)^{2022}\left(mod3\right)\left(1\right)\)
\(\text{+)}\)Ta có:\(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{2023}\equiv\left(-1\right)^{2023}\left(mod3\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow5^{2022}+5^{2023}\equiv0\left(mod3\right)\)
Vậy...
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
Ta có thể viết lại M dưới dạng:
M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)
= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]
= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)
= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)
Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có
1/n³ > 1/(n+1)³
Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,
1/2³ > 1/3³
1/3³ > 1/4³
…
1/2022³ > 1/2023³
Vậy ta có
M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³
Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.
Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:
S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³
Với mọi số nguyên dương n, ta có:
1/n³ < 1/n(n-1)
Do đó,
1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...
1/2023³ < 1/(2023x2024)
Tổng các số hạng bên phải có thể được viết lại dưới dạng:
1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1
Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.
A = 1 + 2022 + 2022 + 20222 + 20223 + 20224 + 20225 + 20226 + 20227
2022A = 2022 + 2022 + 20222 + 20223 + 20224 + 20225 + 20226 + 20227 + 20228
2022A - A = (2022 + 2022 + 2022 + 20223 + 20224 + 20225 + 20226 + 20227 +20228) - (1 + 2022 + 2022 + 20222 + 20223 + 20224 + 20225 + 20226 + 20227)
2021A = 20228 - 1
A = (20228 - 1) : 2021