\(1^2+2^2+3^2+.....+100^2=338350\)

Hãy tính : \(A=2^2+4^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

A = 338350 x 2 

A= 676700

vậy A p=676700

chúc em học tốt 

14 tháng 3 2017

Tacó A=22x42x62x…x2002

         A=(1x2)2x(2x2)2x(3x2)2x…x(100x2)2

         A=12x22x22x22x32x22x…x1002x22

         A=12x4x22x4x32x4x…1002x4

         A=4.(12x22x32x…x1002)

         A=4.338350

         A=1353400

     Vậy A=1353400

28 tháng 2 2019

Ai giúp giùm bài này với

Thời hạn : Thứ 5 tuần sau nhé

28 tháng 2 2019

a)Gọi số mới là 664abc (0=<a,b,c=<9)

ta có  664abc  chia hết cho 9 nên (6+6+4+a+b+c)\(⋮\)\(\Leftrightarrow\left(16+a+b+c\right)⋮9\)

mặt khác số đó còn chia hết cho 11

nên (6+4+b-6-a-c)\(⋮11\Leftrightarrow\left(4+b-a-c\right)⋮11\)mà 4+b-c-a có GTLN là 13 vậy 4+b-a-c=11

ta thấy \(0\le a,b,c\le9\Rightarrow16+a+b+c\le43\Rightarrow16+a+b+c\in\left\{9;18;27;36\right\}\)

16+a+b+c9182736
4+b-a-c11111111
b0(t/m)4,5(L)9(t/m)13,5(L)

số đó cx chia hết cho 5 nên c=(0;5)

TH1 b=0 thì a+c=-7(vô lý)

Th2:b=9 thì a+c=2

nên c chỉ có thể là 0

với c=0 thì a=2

Vậy số thêm vào là 290 và số sau khi thêm vào là 664290

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1

a: \(=36:4+2\cdot25=9+50=59\)

b: \(=79\left(82+18\right)=79\cdot100=7900\)

c: \(=49-9-\left(4^2+2^2\right)\)

\(=40-16-4=40-20=20\)

d: \(=16+\left[400:\left(200-42-138\right)\right]\)

\(=16+400:20=16+20=36\)

1 tháng 2 2019

1/A=1.21.22.23.24.25                                                               câu 2 làm tương tự                                                            

A.2=2.22.23.24.25.26                                

A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)

A=26-1

3 A=1+3+32+33+...37

3.A=3+32+33+34...+38

2A=38-1

A=(38-1):2

30 tháng 1 2020

Câu 1 Tính 

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)

Câu 2 Tính 

\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

Câu 3 

a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)

=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120  (2)

Lấy (2) trừ (1) theo vế ta có : 

3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)

=>  2M = 3120 - 1

=>    M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

        = (1 + 3 + 32) + (3+ 34 + 35) + ... + (3117 + 3118 + 3119)

        = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)

        = 13 + 33.13 + ... + 3117.13

        = 13(1 + 33 + ... + 3117\(⋮\)13

=> M \(⋮\)13

M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)

= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)

= 40 + 34.40 + ... + 3116.40

= 40(1 + 34 + ... + 3116

= 5.8.(1 + 34 + ... + 3116)  \(⋮\)5

4) Tính 

A = 2100 - 299 - 298 - ... - 22 - 2 - 1

=> 2A =  2101 - 2100 - 299 - 298 - 22 - 2 - 1

Lấy 2A trừ A theo vế ta có : 

2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)

=>   A = 2101 - 2100 - 2100 + 1

=>   A = 2101 - (2100 + 2100) + 1

=>   A  = 2101 - 2100 . 2 + 1

=>   A = 1

Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

          = 99.100.101 

=> C = 99.100.101 : 3 =  333300

b) Ta có : D = 22 + 42 + 62 + ... + 982

                    = 22(12 + 22  + 32 + ... + 492

                    =  2.(12 + 22  + 32 + ... + 492)

                    = 22.(1.1 + 2.2 + 3.3 + ... + 49.49)

                    = 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]

                    = 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]

Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

          = 49.50.51 

=> E = 49.50.51/3 = 41650

Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]

               = 22.[41650 - 49(49 + 1)/2]

               = 22.[41650 - 1225 

               = 22.40425

               = 161700

=> D = 161700

3 tháng 7 2018

a) 1 + 4 + 7 + ... + 100 

Ta có : 1 + 4 + 7 + ... + 100 ( có 34 số hạng )

        = (100 + 1) . 34 : 2 = 1717

b) 2 + 6 + 10 + ... + 102

Ta có :  2 + 6 + 10 + ... + 102 ( có 26 số hạng )

          = (102 + 2) . 26 : 2 = 1352

c) 2 + 2+ 23 + ... + 2100

Ta có : S = 2 + 2+ 23 + ... + 2100

          2S = 2.(2 + 2+ 23 + ... + 2100)

        2S = 2+ 23 + ... + 2100 + 2101

    2S - S = (2+ 23 + ... + 2100 + 2101) - (2 + 2+ 23 + ... + 2100)

          S = 2101 - 2

3 tháng 7 2018

a) \(1+4+7+...+100\)

Số số hạng  : (100-1) : 3 + 1= 34 (Số)

Tổng : \(\frac{34\left(100+1\right)}{2}=1717\)

b) Số số hạng : (102 - 2 ) : 4 + 1 = 26(Số)

Tổng : \(\frac{26\cdot\left(102+2\right)}{2}=1352\)

c) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)