K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

13 tháng 9 2015

Sửa lại đề là: Cho 10- 1 chia hết cho 19

a) 10- 1 chia hết cho 19 => 10- 1 = 19n (n là số tự nhiên)

=> 10k = 19n + 1 => 102k = (10k)= (19n +1)2 = (19n +1)(19n+1)  = 361n2 + 38n + 1

=> 102k - 1  = 361n+ 38n + 1 - 1 = 361n+ 38n chia hết cho 19 => 102k - 1 chia hết cho 19

b) Tường tự,

103k = (10k)= (19n + 1)3 = (19n +1)2.(19n +1) = (361n+ 38n +1).(19n +1) = 6859n3 + 1083n2 + 57n + 1

=> 103k -1 = 6859n3 + 1083n2 + 57n  chia hết cho 19 

vậy 103k - 1 chia hết cho 19 

13 tháng 9 2015

hình như sai đề vì số là lũy thừa của 10 làm gì chia hết cho 19           

18 tháng 7 2015

\(10^k-1\text{ chia hết cho 19 nên }10^k=19m+1\)

Theo đó mà làm.

31 tháng 1 2016

có lộn đề ko bạn

14 tháng 10 2015

a. 10^2k-1= 10^2k-10^k+10^k-1

= 10^k( 10^k-1) + (10^k-1)

nhìn lại đề bài kìa em, 10^k-1 chia hết cho 19

=> biểu thức kia cũng chia hết cho 19

câu b tương tự