K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

NV
21 tháng 6 2019

a/ \(A=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)

\("="\Leftrightarrow x=1\)

b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=...\)

c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)

\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)

d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{\frac{4x}{x}}+4=8\)

\("="\Leftrightarrow x^2=4\Rightarrow x=...\)

e/ \(E=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)

\("="\Leftrightarrow x+3=5-x\Rightarrow x=...\)

f/ \(F=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)

\("="\Leftrightarrow2x+6=5-2x\Leftrightarrow x=...\)

24 tháng 2 2016

Chi biet phan 5 thoi @

      Vi 3a=5b=12suy ra a=4 ;b=2,4  ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6

25 tháng 2 2016

nguyen xuan duong sr minh viet nham dau bai 3a-5b=12

21 tháng 12 2015

mình làm phần tử đại diện thôi nha

áp dụng bđt cô-si ta đc:

ta có \(\frac{x^2}{\sqrt{x^2-1}}=\frac{x^3}{x\sqrt{x^2-1}}\ge\frac{x^3}{\frac{x^2+x^2-1}{2}}=2x^3\)

Đến đây đc rồi nhỉ?

21 tháng 5 2016

Áp dụng cô-si \(\frac{2}{x-3}+\frac{2}{5-x}\ge2\sqrt{\frac{2}{x-3}.\frac{2}{5-x}}\)=\(\frac{4}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)

A = \(\frac{5}{\sqrt{\left(x-3\right)\left(5-x\right)}}\)

Mà \(\sqrt{\left(x-3\right)\left(5-x\right)}\le\frac{x-3+5-x}{2}=1\)(theo cô-si)

\(\Rightarrow\frac{1}{\sqrt{\left(x-3\right)\left(5-x\right)}}\ge1\)

nên A\(\ge\)5

Dấu bằng xảy ra khi x-3=5-x  <=> x=4 (thỏa mãn ĐK 3<x<5)

Vậy Amin =5 khi x=4

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)