Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ:
xét tam giác ABC cân tại A
=> AB=AC( t/c tam giác cân)
=> ^B=^C( t/c tam giác cân)
có : ^DBC=^DBA( GT)
^ACE=^BCE(GT)
^B=^C(CMT)
=>^DBC=^ECB
=> ^ABD=^ACE
xét tam giác BEC và tam giác DBC
^DBC=^ECB(CMT)
BC-CẠNH CHUNG
^EBC=^DCB(CMT)
=> tam giác BEC = tam giác DBC (G.C.G)
=> BE=DC(2c t ứ)
b)AB=AC ( CMT)
BE=DC
=>AB-BE=AC-DC
=>AE=AD
=> tam giác AED cân tại A ( đ/n)
=> ^AED =^ADE
c)
AK-PG Â
AK CẮT ED TẠI H
Xét △AEH và △ADH có:
AD=AE (CMT)
∠A1=∠A2 ( tia phân giác AH của A)
Cạnh AH chung
⇒△AEH=△ADH (c.g.c)
⇒∠H1=∠H2 ( 2 góc tương ứng )
Mà ∠H1+∠H2=180 ( kề bù )
⇒∠H1=∠H2=18021802=90
⇒AH⊥ED (1)
Xét △ABK và △ACK có :
AB=AC (gt)
∠A1=∠A2 (CMT)
Cạnh AK chung
⇒△ABK=△ACK (c.g.c)
⇒∠K1=∠K2 ( 2 góc tương ứng )
Mà ∠K1+∠K2=180
⇒∠K1=∠K2=18021802=90
⇒AK⊥BC (2)
Từ (1) và (2) ⇒ ED song song với BC
⇒∠D2=∠B2 ( 2 góc so le trong )
Mà ∠B1=∠B2
⇒∠D2=∠B1
⇒△BED cân tại E
⇒EB=ED
Mà EB = CD
⇒EB=ED=CD
vì tam giác BEC=tam giác CDB
=>BE=CD (1)
'sau đó bạn chứng minh' ED song song vs BC
=>DEC = ECB ( so le trong )
mà BCE = ECD (vì CE là tia phân giác của DCB)
=> DEC = DCE => tam giác DEC cân tại D
=> DE = DC (2)
từ (1) và (2) => BE = ED =DC
ủng hộ mik nhoa
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
góc EBC = DCB (cmt)
BC là cạnh chung
góc ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180 độ - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180 độ - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
góc EBC = DCB (cmt)
BC là cạnh chung
góc ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180 độ - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180 độ - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
góc EBC = DCB (cmt)
BC là cạnh chung
góc ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180 độ - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180 độ - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
tham khảo á
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
EBC = DCB (cmt)
BC là cạnh chung
ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
c) bớt ED đi, c/m ở trên r`
a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)
=> ABC/2 = ACB/2
Mà ABD = CBD = ABC/2
ACE = BCE = ACB/2
Nên ABD = CBD = ACE = BCE
Xét t/g EBC và t/g DCB có:
EBC = DCB (cmt)
BC là cạnh chung
ECB = DBC (cmt)
Do đó, t/g EBC = t/g DCB (g.c.g)
=> BE = CD (2 cạnh tương ứng)
Mà AB = AC (gt) nên AB - BE = AC - CD
=> AE = AD
=> Tam giác AED cân tại A (đpcm)
b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)
Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)
Từ (1) và (2) => ABC = AED
Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)
c) bớt ED đi, c/m ở trên r`
a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:
C = B, CB chung, EBC = DCB \(\Rightarrow\) \(\Delta EBC\)= \(\Delta DCB\)\(\Rightarrow\)EC = DB
\(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.
b) Ta có:
C = \(\frac{180^o-A}{2}\), E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )
c) Vì \(\Delta EBC\)= \(\Delta DCB\)\(\Rightarrow\)BE = DC
a.TG ABC cân tại A gt
=> ^B = ^C tính chất tg cân
Mà ^ECB=^ACE=1/2^C ( CE là pg ^C)
^DBC=^ABD=1/2^B ( BD là pg ^B)
=> ^ECB=^ACE =^DBC=^ABD
Xét tg BEC và tg CDB có:
^ECB = ^DBC(cmt)
BC chung
^B=^C (tg ABC cân tại A)
=>tg BEC = tg CDB(g-c-g)
b. Xét tg ABD và tg ACE có
^A chung
AB = AC (tg ABC cân tại A)
^ABD=^ACE(cmt)
=>tg ABD = tg ACE(g-c-g)
=>AD=AE (cctu)
=> tg ADE là tg cân
Em tự vẽ hình nhé!
a. Xét tam giác BEC và tam giác CDB có:
\(\widehat{B}=\widehat{C}\) (do tam giác ABC cân tại A)
\(\widehat{ECB}=\widehat{DBC}\) (do \(\widehat{B}=\widehat{C}\))
BC chung
Do đó tam giác BEC = tam giác CDB (g.c.g)
b. Từ câu (a) => BE = CD (2 cạnh tương ứng)
Có \(\left\{{}\begin{matrix}AB=AE+BE\\AC=AD+DC\end{matrix}\right.\) => AE = AD
Xét tam giác AED có AE = AD
=> Tam giác AED cân tại A.
c. Từ câu (b)
=> \(\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow2\widehat{AED}+\widehat{A}=180^o\Rightarrow\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\) (1)
Lại có \(\widehat{B}+\widehat{C}+\widehat{A}=180^o\) \(\Leftrightarrow\widehat{B}=\dfrac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> ED // BC.
\(\Rightarrow\widehat{DEC}=\widehat{ECB}\)
Mà \(\widehat{ECB}=\widehat{ECD}\Rightarrow\widehat{DEC}=\widehat{ECD}\)
=> tam giác DEC cân tại D
=> DE = DC
Mà BE = DC (theo câu b)
Do đó BE = ED = DC.