Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^2\) chia hết cho p nghĩa là \(n.n\) chia hết cho p do đó n chia hết cho p
Vậy mệnh đề đẻo lại là n chia hết cho p thì n2 chia hết cho p là đúng
Gọi số đã cho là \(\overline{xy}\left(x\inℕ^∗,1\le x\le9,y\inℕ,0\le y\le9\right)\)
Ta có: \(\overline{xy}=10x+y\)
Theo bài ra, đổi chỗ 2 chữ số đã cho thì được số mới nhỏ hơn số cũ là 18, ta có phương trình: \(10x+y=10y+x+18\)
Lại có, tổng số mới và số cũ là 176, ta có phương trình: \(10x+y+10y+x=176\)
Ta có hệ phương trình:
\(\hept{\begin{cases}10x+y=10y+x+18\\10x+y+10y+x=176\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}9x-9y=18\\11x+11y=176\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\\x+y=16\end{cases}}\)
\(\hept{\begin{cases}x=9\\y=7\end{cases}}\)
Vậy số cần tìm là 97.