Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Diện tích tam giác đều cạnh 3cm là:
\(S=\dfrac{3^2\cdot\sqrt{3}}{4}=\dfrac{9\sqrt{3}}{4}\left(cm^2\right)\)
Câu 2:
Nửa chu vi tam giác là:
\(P=\dfrac{C}{2}=\dfrac{8+8+6}{2}=\dfrac{22}{2}=11\left(cm\right)\)
Diện tích tam giác là:
\(S=\sqrt{P\cdot\left(P-A\right)\cdot\left(P-B\right)\cdot\left(P-C\right)}=\sqrt{11\cdot\left(11-8\right)^2\cdot\left(11-6\right)}\)
\(=\sqrt{11\cdot5\cdot9}=3\sqrt{55}\left(cm^2\right)\)
Gọi BD là phân giác của HAC
=>tam giác ABD cân tại A( có AD dồng thời là dg cao và pgiac)
=> BH=DH = 3a => DC =5a vì BH:HC =3:8
+ Áp dụng tính chất đường phân giác trong tam giác HAC
ta có : AC/AH =DC/DH
=> AC/6 =5/3 => AC =10
+ Áp dụng pita go cho HAC => HC = 8 => a =1
=>BC = 11a =11
=>S =AH.BC/2 =6.11/2 =33
a) Xét tam giác \(BDC\):
\(\widehat{DBC}=180^o-\widehat{BDC}-\widehat{DCB}=180^o-30^o-60^o=90^o\)
Do đó tam giác \(BDC\)vuông tại \(B\).
Có \(\widehat{BDC}=30^o\)nên \(BC=\frac{1}{2}DC\Rightarrow AB=AC=\frac{1}{2}DC\Rightarrow DC=12\left(cm\right)\).
\(BC^2+BD^2=CD^2\)(định lí Pythagore)
\(\Leftrightarrow BD^2=CD^2-BC^2=12^2-6^2=108\)
\(\Leftrightarrow BD=6\sqrt{3}\left(cm\right)\)
b) \(S_{ABD}=S_{DBC}-S_{ABC}=\frac{1}{2}.6.6\sqrt{3}-\frac{6^2\sqrt{3}}{4}=9\sqrt{3}\left(cm^2\right)\)
TA DỰNG NHƯ HÌNH VẼ
ĐẶT S ORQ = n^2 , S OMP = n^2+1 , S OSN = n^2+3
DỄ DÀNG NHẬN THẤY:
TAM GIÁC ORQ ĐỒNG DẠNG VỚI TAM GIÁC PMO
=> \(\frac{OQ}{OP}=\frac{\pi}{\sqrt{\pi^2+1}}\)
=> \(\frac{OQ}{PQ}=\frac{\pi}{\sqrt{\pi^2+1}+\pi}\)
=> S ORQ = \(\frac{\pi^2}{\left(\sqrt{\pi^2+1}+\pi\right)^2}SPQB\)
=> S PQB = \(\left(\sqrt[]{\pi^2+1}+\pi\right)^2\)
CHỨNG MINH TƯƠNG TỰ VỚI SAMN VÀ S SRC RỒI CỘNG LẠI TRỪ ĐI 2 LẦN TỔNG CỦA 3 TAM GIÁC TRONG ĐỀ BÀI LÀ RA DIỆN TÍCH TAM GIÁC ABC