K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

$1< a< b\Rightarrow a-b<0, b>0$

$\Rightarrow \frac{a-b}{b}<0\Rightarrow \frac{a}{b}<1$
Lại có:

$a>1; b<10\Rightarrow \frac{a}{b}> \frac{1}{10}$

Ta có đpcm.

19 tháng 6 2015

a < b + c < a + 1 => 0 < b + c < 1 mà b < c => b + c < 2c

=> 0 < 2c => c > 0  mà b + c < 1 nên b < 1 - c < 1  mà  a > 1 nên  b < a  

19 tháng 6 2015

b + c < a + 1 và b < c 

=> b + c + b < a + 1 + c => 2b < a + 1 < 2a 

=> b < a

14 tháng 12 2016

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

6 tháng 2 2017

cảm ơn nhiều nha leuleuhiha

30 tháng 8 2020

Ta có: \(\left|a-c\right|< 3\)\(\left|b-c\right|< 2\)

\(\Rightarrow\left|a-c\right|+\left|b-c\right|< 3+2=5\)(1)

mà \(\left|a-c\right|+\left|b-c\right|=\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\)(2)

Từ (1) và (2) \(\Rightarrow\left|a-b\right|\le\left|a-c\right|+\left|b-c\right|< 5\)

hay \(\left|a-b\right|< 5\)( đpcm )

29 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left|a-c\right|< 3\\\left|b-c\right|< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|a-c\right|< 3\\\left|c-b\right|< 2\end{cases}}\)

=> \(\left|a-c\right|+\left|c-b\right|< 3+2=5\) (1)

Áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

=> \(\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\) (2)

Từ (1) và (2) => \(\left|a-b\right|< 5\)

29 tháng 8 2020

​​

\(|a-c+c+b\le|a-c|+|c-b|=|a-c|+|c-b=|a-c|+|b-c|=5\)

11 tháng 8 2016

Do \(\frac{a}{b}< \frac{c}{d}\)

=> \(a.d< b.c\)

=> \(a.d+a.b< b.c+a.b\)

=> \(a.\left(b+d\right)< b.\left(a+c\right)\)

=> \(\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Do \(\frac{a}{b}< \frac{c}{d}\)

=> \(a.d< b.c\)

=> \(a.d+c.d< b.c+c.d\)

=> \(d.\left(a+c\right)< c.\left(b+d\right)\)

=> \(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)