Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hãy tích nếu như bạn thông minh
Ai ko tích là bình thường
Còn ai dis là "..."
Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)
\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)
Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\); \(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)
Cộng lại,ta được :
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )
Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )
Dấu "=" xảy ra khi x = y = z = 1
Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1
Vậy ...

Do \(0< x;y;z\le1\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\)
\(\Leftrightarrow xz-x-z+1\ge0\)
\(\Leftrightarrow xz+1\ge x+z\Rightarrow1+y+xz\ge x+y+z\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\)
Hoàn toàn tương tự: \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\) ; \(\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\)
\(\Rightarrow VT\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\) (do \(x;y;z\le1\Rightarrow x+y+z\le3\))
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)
Tương tự:
\(yz+1\ge y+z;zx+1\ge z+x\)
Khi đó
\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)
Không chắc nha !


Câu 2, Do 0<x,y,z<=1 nên ta có:
\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\)
Thay vào VT ta có:
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)
Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)
Từ (1),(2) -> dpcm
1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)
Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
Ta có:
\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)
\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.
P/s: Is that true?

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V

Áp dụng BĐT AM-GM ta có:
\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)
\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)
\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)
\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Dấu "=" <=> \(x=y=z=\frac{1}{3}\)
Ủng hộ và kb với mình ha ^^
Ta có: \(\left(1-x\right)\left(1-y\right)\ge0\)
\(\Leftrightarrow1-x-y+xy\ge0\)
\(\Leftrightarrow1+xy\ge x+y\)
\(\Leftrightarrow1+z+xy\ge x+y+z\)
\(\Rightarrow\frac{z}{1+z+xy}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)
Tương tự CM được: \(\frac{x}{1+x+yz}\le\frac{1}{x+y+z}\) và \(\frac{y}{1+y+zx}\le\frac{1}{x+y+z}\)
Cộng vế 3 BĐT trên lại ta được: \(\frac{x}{1+x+yz}+\frac{y}{1+y+zx}+\frac{z}{1+z+xy}\le\frac{3}{x+y+z}\)
Dấu "=" xảy ra khi: \(x=y=z=1\)